×

Time-dependent fluid-structure interaction. (English) Zbl 1364.35221

The authors study a time-dependent direct scattering problem in fluid-structure interaction. In fact they are interested in determining the manner in which an incoming accoustic wave is scattered by an elastic body immersed in a fluid. For this purpose, a coupling procedure which is a combination of a field equation and a boundary integral equation, is applied. More exactly, the problem is reduced to a nonlocal initial-boundary problem in an elastic body with integral equations on the interface between the domains occupied by the elastic body and the fluid. This nonlocal problem is analized by the Lubich approach via the Laplace transform.

MSC:

35P25 Scattering theory for PDEs
35L05 Wave equation
45P05 Integral operators
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N38 Boundary element methods for boundary value problems involving PDEs

References:

[1] BielakJ, MacCamyRC. Symmetric finite element and boundary integral coupling methods for fluid‐solid interaction I. Quarterly of Applied Mathematics1991; 49:107-119. · Zbl 0731.76043
[2] EverstineGC, HendersonFM. Coupled finite element/boundary element approach for fluid‐structure interaction. Journal of the Acoustical Society of America1990; 87:1938-1947.
[3] HamdiMA, JeanP, A mixed functional for the numerical resolution of fluid‐structure interaction problems. In Aero‐ and Hydro‐Acoustic, Proceedings of I.U.T.A.M. Symposium, Comte‐BellotG (ed.), WilliamJE (ed.), Springer‐Verlag, 269-276, 1985.
[4] HsiaoGC, KleinmanRE, SchuetzLS, On variational formulations of boundary value problems for fluid‐solid interactions. In Elastic Wave Propagation, Proceedings of I.U.T.A.M. ‐ I.U.P.A.P. Symposium, McCarthyMF (ed.), HayesMA (ed.) (eds). Elsevier Science Publishers B.V: (North‐Holland), 1989; 321-326.
[5] LukeCJ, MartinPA. Fluid‐solid interaction: acoustic scattering by a smooth elastic obstacle. SIAM Journal on Applied Mathematics1995; 55:904-922. · Zbl 0832.73045
[6] SchneiderS. FE/FMBE coupling to model fluid‐structure interaction. International Journal for Numerical Methods in Engineering2008; 76:2137-2156. · Zbl 1195.74196
[7] LalienaAR, SayasF‐J. Theoretical aspects of the application of convolution quadrature to scattering off acoustic waves. Numerische Mathematik2009; 112:637-678. · Zbl 1178.65117
[8] SayasF‐J. Retarded potentials and time domain boundary integral equations: a road‐map. Unpublished lecture notes, University of Delaware, March 2013.
[9] vonEstorffO, AntesH. On FEM‐BEM coupling for fluid‐structure interaction analysis in the time domain. International Journal for Numerical Methods in Engineering1991; 31:1151-168. · Zbl 0825.73813
[10] PereiraA, BeerG, Fluid‐structure interaction by a Duhamel‐BEM/FEM coupling. In Recent Advances in Boundary Element Methods, ManolisGD (ed.), PolyzosD (ed.) (eds). Springer Science+Business Media B. V.: Netherlands, 2009; 339-354. · Zbl 1161.74372
[11] SchanzM, Dynamic poroelasticity treated by a time domain boundary element method. In IUTAM/ACM/IABEM Symposium on Advanced Mathematical and Computaional Mechanics Aspects of the Boundary Element Method, BurczynskiT (ed.) (eds). Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; 303-314.
[12] LalienaAR, SayasF‐J. A distributional version of Kirchhoff’s formula. Journal of Mathematical Analysis and Applications2009; 359:197-208. · Zbl 1178.35127
[13] AchesonDJ. Elementary Fluid Dynamics, Oxford Applied Mathematics and Computing Science Series. Clarendon Press: Oxford, 1990. · Zbl 0719.76001
[14] SerrinJ, Mathematical Principles of Classical Fluid Mechanics, 3-26, Volume 8/1 Handbuch der Physik. Springer: Berlin, Heidelberg, New York, 1959.
[15] HsiaoGC, KleinmanRE, RoachGF. Weak solutions of fluid‐solid interaction problems. Mathematische Nachrichten2000; 218:139-163. · Zbl 0963.35043
[16] HsiaoGC, WeinachtRJ. A representation formula for the wave equation revisited. Applicable Analysis: An international Journal2012; 91(2): 371-380. · Zbl 1235.35071
[17] HsiaoGC, WendlandWL. Boundary Integral Equations, Applied Mathematical Sciences, 164. Springer: Berlin, 2008. · Zbl 1157.65066
[18] BambergerA, Ha DuongT. Formulation Variationnelle Espace‐Temps pour le Calcul par Potentiel Retard’e de la Diffraction of d’une Onde Acoustique (I). Mathematical Methods in the Applied Sciences1986; 8(3): 405-435. · Zbl 0618.35069
[19] BambergerA, Ha DuongT. Formulation Variationnelle pour le Calcul de la Diffraction of d’une Onde Acoustique par une Surface Rigide. Mathematical Methods in the Applied Sciences19868(4): 598-608. · Zbl 0636.65119
[20] CostabelM, Time‐dependent problems with the boundary integral equation method. Chapter 25, 703-721 Volume 1 Fundamentals. In Encyclopedia of Computational Mechanics. John Wiley & Sons Ltd: The Atrium, Southern Gate, Chichester, West Sussex, England, 2004.
[21] Ha‐DuongT. On the transient acoustic scattering by a flat object. No.188, CMAP, Ecole polytechnique, French.
[22] HsiaoGC, WeinachtRJ. Transparent boundary conditions for the wave equation—a Kirchhoff point of view. Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.1524, (to appear in print). · Zbl 1277.35233
[23] LubichCh. On the multistep time discretization of linear initial‐boundary value problems and their boundary integral equations. Numerische Mathematik1994; 67(3): 365-389. · Zbl 0795.65063
[24] LubichC, SchneiderR. Time discretization of parabolic boundary integral equations. Numerische Mathematik1992; 63(4): 455-481. · Zbl 0795.65061
[25] DautrayR, LionsJ‐L. Mathematical Analysis and numerical methods for science and technology, 5 evolution problems I 2000), 1992. · Zbl 0755.35001
[26] DomínguezV, SayasF‐J. Some properties of layer potentials and boundary integral operators for the wave equation. Journal of Integral Equations and Applications2013; 25:253-294. · Zbl 1277.35082
[27] MirandaC. Partial Differential Equations of Elliptic Type. Springer: Berlin, 1970. · Zbl 0198.14101
[28] FicheraG. Existence Theorems in Elasticity Theory. Volume 2 Handbuch der Physik, 347-389, Springer, 1972.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.