×

Bang-bang control for a class of optimal stochastic control problems with symmetric cost functional. (English) Zbl 1507.93251

Summary: This paper applies the method of backward stochastic differential equations (BSDEs) to study the bang-bang optimal stochastic control problem, where the optimal control is of the feedback form and the final cost functional is given by a symmetric function. In addition to obtaining the existence of the optimal control, we also give the explicit representation of the optimal control and the optimal value function of the stochastic control problem by the explicit solution of nonlinear BSDEs with symmetric terminal condition.

MSC:

93E20 Optimal stochastic control
49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
93B52 Feedback control
Full Text: DOI

References:

[1] Athans, M.; Falb, P., Optimal control - An introduction to the theory and its applications (2007), Dover Publications, INC
[2] Bapat, A.; Jordan, S., Bang-bang control as a design principle for a classical and quantum optimization algorithms, Quantum Information & Computation, 19, 5-6, 424-446 (2019)
[3] Bellman, R.; Glicksberg, I.; Gross, O., On the bang-bang control problem, Quarterly of Applied Mathematics, 14, 1, 11-18 (1956) · Zbl 0073.11501
[4] Benes̆, V. E., Girsanov functionals and optimal bang-bang laws for final value stochastic control, Stochastic Processes and their Applications, 2, 2, 127-140 (1974)
[5] Bonifacius, L.; Pieper, K.; Vexler, B., Error estimates for space-time discretization of parabolic time-optimal control problems with bang-bang controls, SIAM Journal on Control and Optimization, 57, 3, 1730-1756 (2019) · Zbl 1420.49024
[6] Borodin, A. N.; Salminen, P., Handbook of Brownian motion-facts and formulae (1996), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0859.60001
[7] Chen, Z.; Epstein, L., Ambiguity, risk and asset return in continuous time, Econometrica, 70, 4, 1403-1443 (2002) · Zbl 1121.91359
[8] Chen, Z.; Epstein, L., A central limit theorem for sets of probability measures, Stochastic Processes and their Applications, 152, 424-451 (2022) · Zbl 1502.60028
[9] Chen, Z.; Feng, S.; Zhang, G., Strategy-driven limit theorems associated with bandit problems (2022), arXiv preprint arXiv:2204.04442
[10] Chen, Z.; Kulperger, R.; Wei, G., A comonotonic theorem for BSDEs, Stochastic Processes and their Applications, 115, 1, 41-54 (2005) · Zbl 1070.60050
[11] Chen, Z.; Liu, S.; Qian, Z.; Xu, X., Explicit solutions for a class of nonlinear BSDEs and their nodal sets, Probability, Uncertainty and Quantitative Risk, 7, 4, 283-300 (2022) · Zbl 1502.60089
[12] Davis, M. H.A.; Clark, J. M.C., On predicted miss stochastic control problems, Stochastics, 2, 3, 197-209 (1979) · Zbl 0406.93063
[13] Exarchos, I.; Theodorou, E. A.; Tsiotras, P., Stochastic L \({}^1\)-optimal control via forward and backward sampling, Systems & Control Letters, 118, 101-108 (2018) · Zbl 1402.93265
[14] Friedman, A., Partial differential equations of parabolic type (1964), Prentice-Hall, INC · Zbl 0144.34903
[15] Hamadène, S.; Mu, R., Bang-bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game, Comptes Rendus Mathmatique. Acadmie Des Sciences. Paris, 352, 9, 699-706 (2014) · Zbl 1298.91035
[16] Hamadène, S.; Mu, R., Discontinuous Nash equilibrium points for nonzero-sum stochastic differential games, Stochastic Processes and their Applications, 130, 11, 6901-6926 (2020) · Zbl 1471.49026
[17] Haussmann, U. G., Some examples of optimal stochastic controls or: The stochastic maximum principle at work, SIAM Review, 23, 3, 292-307 (1981) · Zbl 0466.93073
[18] Helmes, K. L., & Stockbridge, R. H. (2010). The Benes̆-problem and related problems revisited. In Proceedings of the 19th international symposium on mathematical theory of networks and systems (pp. 1799-1803).
[19] Hu, Y.; Zhou, X., Constrained stochastic LQ control with random coefficients and application to portfolio selection, SIAM Journal on Control and Optimization, 44, 2, 444-466 (2005) · Zbl 1210.93082
[20] Ikeda, N.; Watanabe, S., A comparison theorem for solutions of stochastic differential equations and its applications, Osaka Mathematical Journal, 14, 3, 619-633 (1977) · Zbl 0376.60065
[21] Karatzas, I.; Ocone, D. L., The finite-horizon version for a partially-observed stochastic control problem of Benes̆ & Rishel, Stochastic Analysis and Applications, 11, 5, 569-605 (1993) · Zbl 0806.93059
[22] Karatzas, I.; Ocone, D. L., A leavable bounded-velocity stochastic control problem, Stochastic Processes and their Applications, 99, 1, 31-51 (2002) · Zbl 1064.93049
[23] Karatzas, I.; Shreve, S., Brownian motion and stochastic calculus (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0734.60060
[24] Karoui, N. El.; Peng, S.; Quenez, M. C., Backward stochastic differential equations in finance, Mathematical Finance, 7, 1, 1-71 (1997) · Zbl 0884.90035
[25] Lu, T.; Cheng, G. Y., Expanded proximate time-optimal servo control of permanent magnet synchronous motor, Optimal Control Applications & Methods, 37, 4, 782-797 (2016) · Zbl 1346.49008
[26] Olsder, G. J., On open- and closed-loop bang-bang control in nonzero-sum differential games, SIAM Journal on Control and Optimization, 40, 4, 1087-1106 (2002) · Zbl 1005.91023
[27] Pan, B. F.; Pan, X.; Ma, X. Y., A quadratic homotopy method for fuel-optimal low-thrust trajectory design, Proceedings of the Institution of Mechanical Engineering Part G: Journal of Aerospace Engineering, 233, 5, 1741-1757 (2019)
[28] Pardoux, E.; Peng, S., Adapted solution of a backward stochastic differential equation, Systems & Control Letters, 14, 1, 55-61 (1990) · Zbl 0692.93064
[29] Pardoux, E.; Peng, S., Backward stochastic differential equations and quasilinear parabolic partial differential equations, (Stochastic partial differential equations and their applications, vol. 176 (1992), Springer: Springer Berlin Heidelberg), 200-217 · Zbl 0766.60079
[30] Pontryagin, L. S.; Boltyanskii, V. G.; Gamkrelidze, R. V.; Mischenko, E. F., The mathematical theory of optimal processes (1962), Wiley: Wiley New York · Zbl 0102.32001
[31] Scott, M., Time/fuel optimal control of constrained linear discrete systems, Automatica, 22, 6, 711-715 (1986) · Zbl 0602.93047
[32] Shono, F., Mouri, N., Higuchi, T., & Fuchiwaki, O. (2016). Simulation of 3-axis state feedback controller with bang-bang control for positioning mechanism driven by \(6\) piezoelectric actuators. In 2016 IEEE international conference on advanced intelligent mechatronics (pp. 1533-1538).
[33] Steven, E., Reflected Brownian motion in the bang-bang control of Brownian drift, SIAM Journal on Control and Optimization, 19, 4, 469-478 (1981) · Zbl 0462.49024
[34] Wang, L. J., Minimal time impulse control problem of semilinear heat equation, Journal of Optimization Theory and Applications, 188, 3, 805-822 (2021) · Zbl 1466.49031
[35] Zhang, W.; Xie, L.; Chen, B. S., Stochastic \(H_2 / H_\infty\) control: A nash game approach (2017), CRC Press · Zbl 1403.93003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.