×

Analysis of a generalized kinematic impact law for multibody-multicontact systems, with application to the planar rocking block and chains of balls. (English) Zbl 1344.70029

Summary: In this paper, we analyze the capabilities of a generalized kinematic (Newton’s like) restitution law for the modeling of a planar rigid block that impacts a rigid ground. This kinematic restitution law is based on a specific state transformation of the Lagrangian dynamics, using the kinetic metric on the configuration space. It allows one to easily derive a restitution rule for multiple impacts. The relationships with the classical angular velocity restitution coefficient \(r\) for rocking motion are examined in detail. In particular, it is shown that \(r\) has the interpretation of a tangential restitution coefficient. The case when Coulomb’s friction is introduced at the contact impulse level together with an angular velocity restitution is analyzed. A simple chain of aligned balls is also examined, illustrating that the impact law applies to various types of multibody systems.

MSC:

70F35 Collision of rigid or pseudo-rigid bodies
70H03 Lagrange’s equations
74M20 Impact in solid mechanics

Software:

Meschach

References:

[1] Acary, V., Brogliato, B.: Numerical Simulation for Nonsmooth Dynamical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Heidelberg (2008) · Zbl 1173.74001
[2] Andreaus, U., Casini, P.: On the rocking-uplifting motion of a rigid block in free and forced motion: influence of sliding and bouncing. Acta Mech. 138, 219–241 (1999) · Zbl 0964.70007 · doi:10.1007/BF01291846
[3] Ballard, P.: The dynamics of discrete mechanical systems with perfect unilateral constraints. Arch. Ration. Mech. Appl. 154, 199–274 (2000) · Zbl 0965.70024 · doi:10.1007/s002050000105
[4] Bernstein, D.S.: Matrix, Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press, Princeton (2005) · Zbl 1075.15001
[5] Bowling, A., Flickinger, D.M., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22, 27–45 (2009) · Zbl 1189.70006 · doi:10.1007/s11044-009-9147-5
[6] Brach, R.M.: Mechanical Impact Dynamics. Wiley, New York (1991)
[7] Brach, R.M.: Impact coefficients and tangential impacts. J. Appl. Mech. 64, 1014–1017 (1997) · Zbl 0899.73086 · doi:10.1115/1.2788967
[8] Brogliato, B.: Nonsmooth Mechanics, 2nd edn. Springer, London (1999) · Zbl 0917.73002
[9] Brogliato, B.: Nonsmooth Impact Mechanics. LNCIS, vol. 220. Springer, London (1996) · Zbl 0861.73001
[10] Chatterjee, A., Ruina, A.: A new algebraic rigid-body collision law based on impulse space considerations. J. Appl. Mech. 65, 939–951 (1998) · doi:10.1115/1.2791938
[11] Choi, J., Ryu, H.S., Kim, C.W., Choi, J.H.: An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometries. Multibody Syst. Dyn. 23, 99–120 (2010) · Zbl 1192.70005 · doi:10.1007/s11044-009-9173-3
[12] Dimitrakopoulos, E.G.: Analysis of a frictional oblique impact observed in skew bridges. Nonlinear Dyn. 60, 575–595 (2010) · Zbl 1194.74229 · doi:10.1007/s11071-009-9616-7
[13] Djerassi, S.: Collision with friction; Part A: Newton’s hypothesis. Multibody Syst. Dyn. 29, 37–54 (2009) · Zbl 1163.70007 · doi:10.1007/s11044-008-9126-2
[14] Dzonou, R., Monteiro-Marques, M.D.P.: A sweeping process approach to inelastic contact problems with general inertia operators. Eur. J. Mech. A, Solids 26(3), 474–490 (2007) · Zbl 1150.74085 · doi:10.1016/j.euromechsol.2006.07.002
[15] Fielder, W.T., Virgin, L.N., Plaut, R.H.: Experiments and simulation of overturning of an asymmetric rocking block on an oscillating foundation. Eur. J. Mech. A, Solids 16(5), 905–923 (1997) · Zbl 0894.73125
[16] Flickinger, D.M., Bowling, A.: Simultaneous oblique impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 23, 249–261 (2010) · Zbl 1376.70008 · doi:10.1007/s11044-009-9182-2
[17] Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010) · Zbl 1219.70014 · doi:10.1007/s11044-009-9178-y
[18] Förg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14, 137–154 (2005) · Zbl 1146.70317 · doi:10.1007/s11044-005-0725-x
[19] Frémond, M.: Collisions. Istituto Poligrafico e Zecca Dello Stato s.p.a., Roma (2007)
[20] Frémond, M.: Rigid bodies collisions. Phys. Lett. A 204, 33–41 (1995) · Zbl 1020.70501 · doi:10.1016/0375-9601(95)00418-3
[21] Gale, D.: An indeterminate problem in classical mechanics. Am. Math. Mon. 59(5), 291–295 (1952) · Zbl 0049.24501 · doi:10.2307/2307502
[22] Glocker, Ch.: Concepts for modeling impacts without friction. Acta Mech. 168, 1–19 (2004) · Zbl 1063.74075 · doi:10.1007/s00707-004-0076-3
[23] Glocker, C.: An introduction to impacts. In: Haslinger, J., Stavroulakis, G. (eds.) Nonsmooth Mechanics of Solids. CISM Courses and Lectures, vol. 485, pp. 45–102. Springer, Wien (2006) · Zbl 1130.74035
[24] Glocker, C., Aeberhard, U.: The geometry of Newton’s cradle. In: Alart, P., Maisonneuve, O., Rockafellar, R.T. (eds.) Nonsmooth Mechanics and Analysis. Theoretical and Numerical Advances. AMMA, vol. 12, pp. 185–194. Springer, Berlin (2006)
[25] He, K., Dong, S., Zhou, Z.: Multigrid contact detection method. Phys. Rev. E 75, 036710 (2007)
[26] Heidenreich, B.: Small and half-scale experimental studies of rockfall impacts on sandy slopes. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, section de Génie Civil (CH), Thèse no 3059 (2004)
[27] Housner, G.W.: The behaviour of inverted pendulum structures during earthquakes. Bull. Seismol. Soc. Am. 53(2), 403–417 (1963)
[28] Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic Press, San Diego (1985) · Zbl 0558.15001
[29] Leine, R.I., van de Wouw, N.: Stability properties of equilibrium sets of non-linear mechanical systems with dry friction and impact. Nonlinear Dyn. 51, 551–583 (2008) · Zbl 1170.70340 · doi:10.1007/s11071-007-9244-z
[30] Lipscombe, P.R., Pellegrino, S.: Free rocking of prismatic blocks. J. Eng. Mech. 119(7), 1387–1410 (1993) · doi:10.1061/(ASCE)0733-9399(1993)119:7(1387)
[31] Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems: Part I. Theoretical framework. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464(2100), 3193–3211 (2008) · Zbl 1186.70012 · doi:10.1098/rspa.2008.0078
[32] Liu, C., Zhao, Z., Brogliato, B.: Energy dissipation and dispersion effects in a granular media. Phys. Rev. E 78(3), 031307 (2008)
[33] Liu, C., Zhao, Z., Brogliato, B.: Variable structure dynamics in a bouncing dimer. INRIA Research Report 6718, November 2008. http://hal.inria.fr/inria-00337482/fr/
[34] Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems: Part II. Numerical algorithm and simulation results. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2101), 1–23 (2009) · Zbl 1186.70011 · doi:10.1098/rspa.2008.0079
[35] Lun, C.K.K., Bent, A.A.: Computer simulation of simple shear flow of inelastic, frictional spheres. In: Thortin (ed.) Powders and Grains, vol. 93, pp. 301–306 (1993)
[36] Milne, J.: Seismic experiments. Trans. Seism. Soc. Jpn. 8, 1–82 (1885)
[37] Modarres Najafabadi, S.A., Kövecses, J., Angeles, J.: Generalization of the energetic coefficient of restitution for contacts in multibody systems. J. Comput. Nonlinear Dyn. 3, 041008 (2008) · Zbl 1347.70019
[38] Modarres Najafabadi, S.A., Kövecses, J., Angeles, J.: Impacts in multibody systems: modeling and experiments. Multibody Syst. Dyn. 20, 163–176 (2008) · Zbl 1347.70019 · doi:10.1007/s11044-008-9117-3
[39] Monteiro-Marques, M.D.P.: Differential Inclusions in Nonsmooth Mechanical Problems. Shocks and Dry Friction. Progress in Nonlinear Differential Equations and their Applications, vol. 9. Birkhauser, Basel (1993) · Zbl 0802.73003
[40] Moreau, J.J.: Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A, Solids 13(4), 93–114 (1994) · Zbl 0815.73009
[41] Paoli, L.: Continuous dependence on data for vibro-impact problems. Math. Models Methods Appl. Sci. 15(1), 1–41 (2005) · Zbl 1160.76348 · doi:10.1142/S0218202505003873
[42] Payr, M., Glocker, C., Bösch, C.: Experimental treatment of multiple contact collisions. In: Euromech Conference ENOC, Eindhoven, 7–12 August, pp. 450–459 (2005)
[43] Payr, M.: An experimental and theoretical study of perfect multiple contact collisions in linear chains of bodies. PhD thesis ETH Zurich, No. 17808, ETH E-Collection, 2008, 171 pages. Available at http://www.zfm.ethz.ch/e/dynamics/payr_collisions.htm
[44] Payr, M., Glocker, C.: Oblique frictional impact of a bar: analysis and comparison of different impact laws. Nonlinear Dyn. 41, 361–383 (2005) · Zbl 1142.74363 · doi:10.1007/s11071-005-8200-z
[45] Pena, F., Prieto, F., Lourenço, P.B., Campos Costa, A., Lemos, J.V.: On the dynamics of rocking motion of single rigid-block structures. Earthquake Eng. Struct. Dyn. 36, 2383–2399 (2007) · doi:10.1002/eqe.739
[46] Perry, J.: Note on the rocking of a column. Trans. Seism. Soc. Jpn. 3, 103–106 (1881)
[47] Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley Series in Nonlinear Science (1996) · Zbl 0922.70001
[48] Prieto, F., Lourenço, P.B.: On the rocking behavior of rigid objects. Meccanica 40, 121–133 (2005) · Zbl 1098.70507 · doi:10.1007/s11012-005-5875-7
[49] Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng. 39, 2673–2691 (1996) · Zbl 0882.70003 · doi:10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
[50] Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000) · Zbl 0961.74002
[51] Stronge, W.J., James, R., Ravani, B.: Oblique impact with friction and tangential compliance. Philos. Trans. R. Soc. Lond. A 359, 1–19 (2001) · Zbl 1097.70529
[52] Taniguchi, T.: Non-linear response analyses of rectangular rigid bodies subjected to horizontal and vertical ground motion. Earthquake Eng. Struct. Dyn. 31, 1481–1500 (2002) · doi:10.1002/eqe.170
[53] Walton, O.R.: Numerical simulation of inelastic, frictional particle-particle interactions. In: Roco, M.C. (ed.) Particulate Two-Phase Flow. Butterworth/Heinemann, Stoneham (1992)
[54] Yilmaz, C., Gharib, M., Hurmuzlu, Y.: Solving frictionless rocking block problem with multiple impacts. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465, 3323–3339 (2009) · Zbl 1186.70016 · doi:10.1098/rspa.2009.0273
[55] Yim, C.S., Chopra, A.K., Penzien, J.: Rocking response of rigid blocks to earthquakes. Earthquake Eng. Struct. Dyn. 8(6), 565–587 (1980) · doi:10.1002/eqe.4290080606
[56] Zhang, H., Brogliato, B., Liu, C.: Study of the planar rocking-block dynamics without and with friction: critical kinetic angles. Submitted
[57] Zhang, H., Brogliato, B.: The planar rocking block: analysis of kinematic restitution laws, and a new rigid-body impact model with friction. INRIA Research Report RR-7580, March 2011. http://hal.inria.fr/inria-00579231/en/
[58] Zhao, Z., Liu, C., Brogliato, B.: Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2107), 2267–2292 (2009) · Zbl 1186.70010 · doi:10.1098/rspa.2008.0520
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.