×

Invariant curves for a second-order difference equation modelled from macroeconomics. (English) Zbl 1330.39006

The authors study the invariant curves for the difference equation \[ x_{n+1}=cx_{n}+f(x_{n}-x_{n-1}),\quad n\in \mathbb N, \tag{1} \] which is modelled from macroeconomics. The dynamics of Eq. (1) can be described equivalently by the planar mapping \( F:\mathbb R^{2}\rightarrow \mathbb R^{2} \)defined by \( F(x,y)=(y,cy+f(y-x))\). Its invariant curves \( \Gamma :y=\varphi(x) \) satisfy the equation \( cy+f(y-x)=\varphi(y) \), which leads to the iterative functional equation \[ \varphi(\varphi(x))=c \varphi(x)+f(\varphi(x)-x).\tag{2} \] First, the authors investigate the linear case, viz, \( f=kx+\rho\). For \( \rho\neq 0\), all solutions of (2) with \( f=kx+\rho \) are given under non-hyperbolic characteristic roots by piecewise construction, see [J. Matkowski and W. Zhang, Acta Math. Sin., New Ser. 13, No. 3, 421–432 (1997; Zbl 0881.39011)]. For nonlinear \(f\), the Banach contraction principle is employed to obtain results concerning existence of invariant curves for (2). Continuous dependence of solutions of (2) on \( f \) is discussed and an example is given to illustrate the results obtained for nonlinear case.

MSC:

39A10 Additive difference equations
39B12 Iteration theory, iterative and composite equations
91B64 Macroeconomic theory (monetary models, models of taxation)

Citations:

Zbl 0881.39011
Full Text: DOI

References:

[1] DOI: 10.1137/S106482750241373X · Zbl 1038.65139 · doi:10.1137/S106482750241373X
[2] DOI: 10.1007/978-1-4757-3110-1 · doi:10.1007/978-1-4757-3110-1
[3] DOI: 10.1080/10236190410001652829 · Zbl 1072.39007 · doi:10.1080/10236190410001652829
[4] M. Kuczma, Functional Equations in a single Variable, Polish Scientific Publishers, Warszawa, 1968.
[5] DOI: 10.1017/CBO9781139086639 · doi:10.1017/CBO9781139086639
[6] DOI: 10.1080/10236190701483145 · Zbl 1141.39006 · doi:10.1080/10236190701483145
[7] DOI: 10.1017/S0143385710000805 · Zbl 1241.32026 · doi:10.1017/S0143385710000805
[8] DOI: 10.1016/j.jmaa.2011.05.078 · Zbl 1230.26015 · doi:10.1016/j.jmaa.2011.05.078
[9] DOI: 10.1007/BF02560023 · Zbl 0881.39011 · doi:10.1007/BF02560023
[10] DOI: 10.1080/10236199708808092 · Zbl 0891.34070 · doi:10.1080/10236199708808092
[11] DOI: 10.1080/10236190008808219 · Zbl 0953.39010 · doi:10.1080/10236190008808219
[12] DOI: 10.2307/1927758 · doi:10.2307/1927758
[13] DOI: 10.1016/S0362-546X(96)00054-5 · Zbl 0877.39004 · doi:10.1016/S0362-546X(96)00054-5
[14] DOI: 10.1080/10236199808808147 · Zbl 0913.39008 · doi:10.1080/10236199808808147
[15] DOI: 10.1080/10236190290032525 · Zbl 1004.39500 · doi:10.1080/10236190290032525
[16] DOI: 10.1137/0517075 · Zbl 0606.47056 · doi:10.1137/0517075
[17] DOI: 10.1007/s00010-003-2708-4 · Zbl 1060.39019 · doi:10.1007/s00010-003-2708-4
[18] Zhang W.M. , Publ. Math. Debrecen  76 pp 117– (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.