×

A mixed parameter formulation with applications to linear viscoelastic slender structures. (English) Zbl 1541.65099

Summary: We present the analysis of an abstract parameter-dependent mixed variational formulation based on Volterra integrals of second kind. Adapting the classic mixed theory in the Volterra equations setting, we prove the well posedness of the resulting system. Stability and error estimates are derived, where all the estimates are uniform with respect to the perturbation parameter. We provide applications of the developed analysis for a viscoelastic Timoshenko beam and report numerical tests for this problem. We also comment, numerically, the performance of a viscoelastic Reissner-Mindlin plate.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
45D05 Volterra integral equations
65R20 Numerical methods for integral equations
35A15 Variational methods applied to PDEs
76A10 Viscoelastic fluids
74K20 Plates
74B10 Linear elasticity with initial stresses
74D05 Linear constitutive equations for materials with memory
35Q74 PDEs in connection with mechanics of deformable solids

Software:

FEniCS
Full Text: DOI

References:

[1] M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The FEniCS project version 1.5. Arch. Numer. Software 3 (2015) 9-23.
[2] H. Aminikhah and J. Biazar, A new analytical method for solving systems of Volterra integral equations. Int. J. Comput. Math. 87 (2010) 1142-1157. · Zbl 1197.65218 · doi:10.1080/00207160903128497
[3] J. Argyris, I. St. Doltsinis and V.D. da silva, Constitutive modelling and computation of non-linear viscoelastic solids. Part I: rheological models and numerical integration techniques. Comput. Methods Appl. Mech. Eng. 88 (1991) 135-163. · Zbl 0751.73002 · doi:10.1016/0045-7825(91)90252-2
[4] D.N. Arnold, Discretization by finite elements of a model parameter dependent problem. Numer. Math. 37 (1981) 405-421. · Zbl 0446.73066 · doi:10.1007/BF01400318
[5] H.T. Banks, S. Hu and Z.R. Kenz, A brief review of elasticity and viscoelasticity for solids. Adv. Appl. Math. Mech. 3 (2011) 1-51. · doi:10.4208/aamm.10-m1030
[6] K.J. Bathe, Finite Element Procedures. Prentice-Hall (1996).
[7] L. Beirãao da Veiga, D. Mora and G. Rivera, Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comp. 88 (2019) 149-178. · Zbl 1404.65258
[8] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44, Springer (2013). · Zbl 1277.65092
[9] D. Chapelle, A locking-free approximation of curved rods by straight beam elements. Numer. Math. 77 (1997) 299-322. · Zbl 0890.73063 · doi:10.1007/s002110050288
[10] D. Chapelle and K.-J. Bathe, The Finite Element Analysis of Shells-Fundamentals. Springer Science & Business Media (2013).
[11] T.-M. Chen, The hybrid laplace transform/finite element method applied to the quasi-static and dynamic analysis of viscoelastic Timoshenko beams. Int. J. Numer. Methods Eng. 38 (1995) 509-522. · Zbl 0820.73075 · doi:10.1002/nme.1620380310
[12] Q. Chen and Y.W. Chan, Integral finite element method for dynamical analysis of elastic-viscoelastic composite structures. Comput. Struct. 74 (2000) 51-64. · doi:10.1016/S0045-7949(98)00321-6
[13] G. Chen, X. Xie, Y. Xu and Y. Zhang, A locking-free stabilized embedded discontinuous Galerkin method for linear elasticity with strong symmetric stress and continuous displacement trace approximation. Comput. Math. Appl. 134 (2023) 66-86. · Zbl 1538.65500 · doi:10.1016/j.camwa.2022.12.017
[14] C. Chinosi and C. Lovadina, Numerical analysis of some mixed finite element methods for Reissner-Mindlin plates. Comput. Mech. 16 (1995) 36-44. · Zbl 0824.73066 · doi:10.1007/BF00369883
[15] R. Christensen , Theory of Viscoelasticity: An Introduction. Elsevier (2012).
[16] R. Durán and E. Liberman, On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comput. 58 (1992) 561-573. · Zbl 0763.73054 · doi:10.2307/2153202
[17] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159. Springer Science & Business Media (2013).
[18] R.E. Ewing, Y. Lin, T. Sun, J. Wang and S. Zhang, Sharp l 2-error estimates and superconvergence of mixed finite element methods for non-fickian flows in porous media. SIAM J. Numer. Anal. 40 (2002) 1538-1560. · Zbl 1044.76032 · doi:10.1137/S0036142900378406
[19] R.S. Falk, Finite elements for the Reissner-Mindlin plate, in Mixed Finite Elements, Compatibility Conditions, and Applications. Springer (2008) 195-232. · Zbl 1167.74041 · doi:10.1007/978-3-540-78319-0_5
[20] W. Flügge, Viscoelasticity. Springer-Verlag, Berlin Google Scholar (1975). · Zbl 0352.73033 · doi:10.1007/978-3-662-02276-4
[21] T. Führer, C. García Vera and N. Heuer, A locking-free DPG scheme for Timoshenko beams. Comput. Methods Appl. Math. 21 (2021) 373-383. · Zbl 1481.74696 · doi:10.1515/cmam-2020-0048
[22] J.M. Golden and G.A.C. Graham, Boundary Value Problems in Linear Viscoelasticity. Springer Science & Business Media (2013).
[23] G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations. Vol. 34. Cambridge University Press (1990). · Zbl 0695.45002 · doi:10.1017/CBO9780511662805
[24] D. Gutierrez-Lemini, Engineering Viscoelasticity. Springer (2014). · Zbl 1294.74001 · doi:10.1007/978-1-4614-8139-3
[25] J.S. Hale, M. Brunetti, S.P.A. Bordas and C. Maurini, FEniCS-Shells (2016).
[26] G. Harper, R. Wang, J. Liu, S. Tavener and R. Zhang, A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements. Comput. Math. Appl. 80 (2020) 1578-1595. · Zbl 1451.74206 · doi:10.1016/j.camwa.2020.07.014
[27] E. Hernández and J. Vellojin, A locking-free finite element formulation for a non-uniform linear viscoelastic Timoshenko beam. Comput. Math. App. 99 (2021) 305-322. · Zbl 1524.74313
[28] E. Hernandez, C. Naranjo and J. Vellojin, Modelling of thin viscoelastic shell structures under Reissner-Mindlin kinematic assumption. Appl. Math. Modell. 79 (2020) 180-199. · Zbl 1481.74512 · doi:10.1016/j.apm.2019.10.031
[29] V. Janovský, S. Shaw, M.K. Warby and J.R. Whiteman, Numerical methods for treating problems of viscoelastic isotropic solid deformation. J. Comput. Appl. Math. 63 (1995) 91-107. · Zbl 0853.73026 · doi:10.1016/0377-0427(95)00059-3
[30] S. Karaa and A.K. Pani, Optimal error estimates of mixed fems for second order hyperbolic integro-differential equations with minimal smoothness on initial data. J. Comput. Appl. Math. 275 (2015) 113-134. · Zbl 1334.65156 · doi:10.1016/j.cam.2014.08.009
[31] S. Lee and S.-Y. Yi, Locking-free and locally-conservative enriched Galerkin method for poroelasticity. J. Sci. Comput. 94 (2023) 23. · Zbl 1512.65212 · doi:10.1007/s10915-022-02084-3
[32] F. Lepe, D. Mora and R. Rodríguez, Locking-free finite element method for a bending moment formulation of Timoshenko beams. Comput. Math. App. 68 (2014) 118-131. · Zbl 1369.74081
[33] F. Lepe, D. Mora and R. Rodríguez, Finite element analysis of a bending moment formulation for the vibration problem of a non-homogeneous Timoshenko beam. J. Sci. Comput. 66 (2016) 825-848. · Zbl 1457.65204 · doi:10.1007/s10915-015-0046-z
[34] S.-O. Londen, On an integral equation in a Hilbert space. SIAM J. Math. Anal. 8 (1977) 950-970. · Zbl 0379.45011 · doi:10.1137/0508073
[35] C. Lovadina, D. Mora and R. Rodríguez, Approximation of the buckling problem for Reissner-Mindlin plates. SIAM J. Numer. Anal. 48 (2010) 603-632. · Zbl 1410.74071 · doi:10.1137/090747336
[36] C. Lovadina, D. Mora and R. Rodríguez, A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam. ESAIM: Math. Model. Numer. Anal. 45 (2011) 603-626. · Zbl 1267.74049 · doi:10.1051/m2an/2010071
[37] O. Martin, Quasi-static and dynamic analysis for viscoelastic beams with the constitutive equation in a hereditary integral form. Ann. Univ. Bucharest 5 (2014) 1-13.
[38] O. Martin, A modified variational iteration method for the analysis of viscoelastic beams. Appl. Math. Modell. 40 (2016) 7988-7995. · Zbl 1471.74044 · doi:10.1016/j.apm.2016.04.011
[39] C.C. Miao and S. Tsimin, Finite Element Methods for Integrodifferential Equations. Vol. 9. World Scientific (1998). · Zbl 0909.65142
[40] S. Mukherjee and G.H. Paulino, The elastic-viscoelastic correspondence principle for functionally graded materials, revisited. J. Appl. Mech. 70 (2003) 359-363. · Zbl 1110.74593 · doi:10.1115/1.1533805
[41] G.S. Payette and J.N. Reddy, Nonlinear quasi-static finite element formulations for viscoelastic Euler-Bernoulli and Timoshenko beams. Int. J. Numer. Methods Biomed. Eng. 26 (2010) 1736-1755. · Zbl 1428.74127 · doi:10.1002/cnm.1262
[42] G.S. Payette and J.N. Reddy, A nonlinear finite element framework for viscoelastic beams based on the high-order reddy beam theory. J. Eng. Mater. Technol. 135 (2013) 011005. · doi:10.1115/1.4023185
[43] J.N. Reddy, An Introduction to Continuum Mechanics. Cambridge University Press (2007). · Zbl 1146.74001 · doi:10.1017/CBO9780511800894
[44] M. Rognes and R. Winther, Mixed finite element methods for linear viscoelasticity using weak symmetry. Math. Models Methods Appl. Sci. - M3AS 20 (2010) 955-985. · Zbl 1245.74087 · doi:10.1142/S0218202510004490
[45] F. Saedpanah, Existence and convergence of galerkin approximation for second order hyperbolic equations with memory term. Numer. Methods Part. Differ. Equ. 32 (2016) 548-563. · Zbl 1338.65293 · doi:10.1002/num.22006
[46] S. Shaw and J.R. Whiteman, Optimal long-time L_p(0, T ) stability and semidiscrete error estimates for the Volterra formulation of the linear quasistatic viscoelasticity problem. Numer. Math. 88 (2001) 743-770. · Zbl 1002.74020 · doi:10.1007/PL00005457
[47] J.C. Simo and T.J.R. Hughes, Computational inelasticity. Vol. 7. Springer Science & Business Media (2006).
[48] R.K. Sinha, R.E. Ewing and R.D. Lazarov, Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data. SIAM J. Numer. Anal. 47 (2009) 3269-3292. · Zbl 1205.65341 · doi:10.1137/080740490
[49] D.W. Van Krevelen and K. Te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions. Elsevier (2009).
[50] Z. Zheng-You, L. Gen-Guo and C. Chang-Jun, Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation. Appl. Math. Mech. 23 (2002) 1-12. · Zbl 1141.74340 · doi:10.1007/BF02437724
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.