×

A new generation criterion theorem for \(C_0\)-semigroups implying a generalization of Kaiser-Weis-Batty’s perturbation theorem. (English) Zbl 07785489

Summary: By proving existence, regularity and uniqueness of solutions to Cauchy problems governed by abstract unbounded operators with finite pseudo-spectral bounds as an alternative and a serious enhancement of results by Melnikova and Filinkov, we establish a new generation criterion theorem for \(C_0\)-semigroups in general Banach spaces. A generalization of Kaiser-Weis-Batty’s perturbation generation theorem in reflexive Banach spaces is therefore derived. We apply our last theoretical result to a singular transport model in \(L^p\)-spaces, \(p\in]1,+\infty[\), where the streaming (unperturbed) semigroup cannot be explicit.

MSC:

47Dxx Groups and semigroups of linear operators, their generalizations and applications
47Axx General theory of linear operators
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)
Full Text: DOI

References:

[1] Arendt, W.; Rhandi, A., Perturbations of positive semigroups, Arch. Math., 56, 107-119 (1991) · Zbl 0687.47031 · doi:10.1007/BF01200341
[2] Batty, CJK, On a perturbation theorem of Kaiser and Weis, Semigroup Forum, 70, 471-474 (2005) · Zbl 1098.47035 · doi:10.1007/s00233-005-0504-2
[3] Boumhamdi, M.; Latrach, K.; Zeghal, A., Existence results for a nonlinear version of Rotenberg model with infinite maturation velocities, Math. Methods Appl. Sci., 38, 1795-1807 (2015) · Zbl 1354.92026 · doi:10.1002/mma.3187
[4] Chabi, M.; Latrach, K., On singular mono-energetic transport equations in slab geometry, Math. Methods Appl. Sci., 25, 1121-1147 (2002) · Zbl 1021.47051 · doi:10.1002/mma.330
[5] Chabi, M., Latrach, K.: Singular one-dimensional transport equations on \(L^p\) spaces. J. Math. Anal. Appl. 283, 319-336 (2003) · Zbl 1043.82033
[6] Engel, KJ; Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics (2000), New York: Springer, New York · Zbl 0952.47036
[7] Greenberg, W.; van der Mee, C.; Protopopescu, V., Boundary Value Problems in Abstract Kinetic Theory (1987), Basel: Birkhäuser, Basel · Zbl 0624.35003 · doi:10.1007/978-3-0348-5478-8
[8] Kaiser, C.; Weis, L., A perturbation theorem for operator semigroups in Hilbert spaces, Semigroup Forum, 67, 63-75 (2003) · Zbl 1046.47037 · doi:10.1007/s002330010166
[9] Kato, T., Perturbation Theory for Linear Operators, Classics in Mathematics (1995), Berlin: Springer, Berlin · Zbl 0836.47009 · doi:10.1007/978-3-642-66282-9
[10] Lods, B., On linear kinetic equations involving unbounded cross-sections, Math. Methods Appl. Sci., 27, 1049-1075 (2004) · Zbl 1072.37062 · doi:10.1002/mma.485
[11] Lods, B., Semigroup generation properties of streaming operators with non-contractive boundary conditions, Math. Comput. Modell., 42, 1441-1462 (2005) · Zbl 1103.47033 · doi:10.1016/j.mcm.2004.12.007
[12] Lumer, G.; Phillips, RS, Dissipative operators in a Banach space, Pacif. J. Math., 11, 679-698 (1961) · Zbl 0101.09503 · doi:10.2140/pjm.1961.11.679
[13] Melnikova, IV; Filinkov, A., Abstract Cauchy Problems: Three Approaches, Monographs and Surveys in Pure and Applied Mathematics (2001), New York: Chapman and Hall/CRC, New York · Zbl 0982.34001
[14] Mokhtar-Kharroubi, M., Mathematical Topics in Neutron Transport Theory: New Aspects, Series on Advances in Mathematics for Applied Sciences (1997), Singapore: World Scientific, Singapore · Zbl 0997.82047
[15] Mokhtar-Kharroubi, M., Optimal spectral theory of the linear Boltzmann equation, J. Funct. Anal., 226, 21-47 (2005) · Zbl 1088.47033 · doi:10.1016/j.jfa.2005.02.014
[16] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983) · Zbl 0516.47023
[17] Rotenberg, M., Transport theory for growing cell populations, J. Theor. Biol., 103, 181-199 (1983) · doi:10.1016/0022-5193(83)90024-3
[18] Shi, D.-K., Feng, D.-X.: Characteristic conditions of the generation of \(C_0\) semigroups in a Hilbert space. J. Math. Anal. Appl. 247, 356-377 (2000) · Zbl 1004.47026
[19] Voigt, J., On the perturbation theory for strongly continuous semigroups, Math. Ann., 229, 163-17l (1977) · Zbl 0338.47018 · doi:10.1007/BF01351602
[20] Voigt, J., On substochastic \(C_0\)-semigroups and their generators, Transp. Theory Stat. Phys., 16, 4-6, 453-466 (1987) · Zbl 0634.47040 · doi:10.1080/00411458708204302
[21] Weis, L., The stability of positive semigroups on \(L_p\) spaces, Proc. Am. Math. Soc., 123, 3089-3094 (1995) · Zbl 0851.47028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.