×

Design and analysis of a group of correlative and switchable dual memristor hyperchaotic systems. (English) Zbl 07906462

Summary: In this paper, a group of correlative and switchable dual memristor hyperchaotic systems consisting of three subsystems is constructed. The common part of the systems is composed of charge-controlled memristor, capacitor and inductor. The switchable parts of the systems are composed of three different flux-controlled memristors. By switching the selection switch, different flux-controlled memristors can be selected to form different subsystems. The chaotic dynamics analysis show that the three subsystems all can be in the hyperchaotic state within the same parameter range. The equivalent analogy electronic circuit of charge-controlled memristor, three flux-controlled memristors, and the whole switchable system are designed. The circuit simulation results are consistent with the numerical simulation results, proving the physical feasibility of the correlative and switchable dual memristor hyperchaotic systems. The structure of the switchable system is simple and easy to implement through electronic circuit elements. One circuit can achieve the functionality of multiple hyperchaotic systems by switching the selection switch. This provides new ideas for integration of chaotic circuits and their applications in the fields of information security, random number generator, signal detection, etc.

MSC:

94C05 Analytic circuit theory
94C60 Circuits in qualitative investigation and simulation of models
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
93C10 Nonlinear systems in control theory

References:

[1] Chua, L., Memristor-the missing circuit element, IEEE Trans. Circuit Theory., 18, 5, 507-519, 1971 · doi:10.1109/TCT.1971.1083337
[2] Strukov, DB; Snider, GS; Stewart, DR; Williams, RS, The missing memristor found, Nature, 453, 7191, 80-83, 2008 · doi:10.1038/nature06932
[3] Raj, N.; Ranjan, RK; Khateb, F., Flux-controlled memristor emulator and its experimental results, IEEE Trans. Very Large Scale Integr. VLSI Syst., 28, 4, 1050-1061, 2020 · doi:10.1109/TVLSI.2020.2966292
[4] Biolek, D.; Kohl, Z.; Vavra, J.; Biolková, V.; Bhardwaj, K.; Srivastava, M., Mutual transformation of flux-controlled and charge-controlled memristors, IEEE Access., 10, 68307-68318, 2022 · doi:10.1109/ACCESS.2022.3186281
[5] Sun, JW; Jianling Yang, JL; Liu, P.; Wang, YF, Design of general flux-controlled and charge-controlled memristor emulators based on hyperbolic functions, IEEE Trans. Comput. Aid. Des., 42, 3, 956-967, 2022 · doi:10.1109/TCAD.2022.3186928
[6] Sahin, ME; Demirkol, AS; Guler, H.; Hamamci, SE, Design of a hyperchaotic memristive circuit based on wien bridge oscillator, Comput. Electr. Eng., 88, 106826, 2020 · doi:10.1016/j.compeleceng.2020.106826
[7] Zhang, X.; Li, CB; Chen, YD; Herbert, HC; Lei, TF, A memristive chaotic oscillator with controllable amplitude and frequency, Chaos Solitons Fractals, 139, 110000, 2020 · Zbl 1490.94081 · doi:10.1016/j.chaos.2020.110000
[8] Mou, J.; Han, ZT; Cao, YH; Banerjee, S., Discrete second-order memristor and its application to chaotic map, IEEE Trans. Circuits-II., 71, 5, 2824-2828, 2024
[9] Sun, JW; Zhao, XT; Fang, J.; Wang, YF, Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization, Nonlinear Dyn., 94, 2879-2887, 2018 · doi:10.1007/s11071-018-4531-4
[10] Lin, HR; Wang, CH; Hong, QH; Sun, YH, A multi-stable memristor and its application in a neural network, IEEE Trans. Circuits-II., 67, 12, 3472-3476, 2020
[11] Du, CH; Liu, LC; Zhang, ZP; Yu, SH, Double memristors oscillator with hidden stacked attractors and its multi-transient and multistability analysis, Chaos Solitons Fractals, 148, 111023, 2021 · doi:10.1016/j.chaos.2021.111023
[12] Sahin, ME; Cam Taskiran, ZG; Guler, H.; Hamamci, SE, Application and modeling of a novel 4D memristive chaotic system for communication systems, Circuits Syst. Signal Process., 39, 3320-3349, 2020 · doi:10.1007/s00034-019-01332-6
[13] Li, CL; Yang, YY; Du, JR; Chen, Z., A simple chaotic circuit with magnetic flux-controlled memristor, Eur. Phys. J. Spec. Top., 230, 7, 1723-1736, 2021 · doi:10.1140/epjs/s11734-021-00181-2
[14] Bao, H.; Jiang, T.; Chu, KB; Chen, M.; Xu, Q.; Bao, BC, Memristor-based canonical Chua’s circuit: extreme multistability in voltage-current domain and its controllability in flux-charge domain, Complexity, 2018, 1076-2787, 2018 · Zbl 1398.93045 · doi:10.1155/2018/5935637
[15] Xie, XY; Wen, SP; Feng, YM; Onasanya, BO, Three-stage-impulse control of memristor-based chen hyper-chaotic system, Am. J. Math., 10, 23, 4560, 2020
[16] Lai, Q.; Zhao, XW; Kengne, J., Memristive chaotic circuits and systems, Eur. Phys. J. Plus., 138, 1, 13, 2023 · doi:10.1140/epjp/s13360-022-03623-5
[17] Wu, P.; Li, CD; He, X.; Huang, TW, A memristor-based Lorenz circuit and its stabilization via variable-time impulsive control, Int. J. Bifurcat. Chaos., 27, 3, 1750031, 2017 · Zbl 1360.34113 · doi:10.1142/S0218127417500316
[18] Hu, CY; Tian, Z.; Wang, Q.; Zhang, XF; Liang, B.; Jian, CL; Wu, XM, A memristor-based VB2 chaotic system: dynamical analysis, circuit implementation, and image encryption, Optik, 269, 169878, 2022 · doi:10.1016/j.ijleo.2022.169878
[19] Liang, B.; Hu, CY; Tian, Z.; Wang, Q.; Jian, CL, A 3D chaotic system with multi-transient behavior and its application in image encryption, Physica A, 616, 128624, 2023 · Zbl 07679931 · doi:10.1016/j.physa.2023.128624
[20] Wang, R.; Li; Kong, SX; Jiang, YC; Lei, TF, A 3D memristive chaotic system with conditional symmetry, Chaos Solitons Fractals, 158, 111992, 2022 · Zbl 1505.94128 · doi:10.1016/j.chaos.2022.111992
[21] Lai, Q.; Wan, ZQ; Kengne, LK; Kuate, PDK; Chen, CY, Two-memristor-based chaotic system with infinite coexisting attractors, IEEE Trans. Circuits-II., 68, 6, 2197-2201, 2020
[22] Njimah, OM; Ramadoss, J.; Telem, AKN; Kengne, J.; Rajagopal, K., Coexisting oscillations and four-scroll chaotic attractors in a pair of coupled memristor-based Duffing oscillators: theoretical analysis and circuit simulation, Chaos Solitons Fractals, 166, 112983, 2023 · doi:10.1016/j.chaos.2022.112983
[23] Yuan, F.; Wang, GY; Wang, XW, Extreme multistability in a memristor-based multi-scroll hyper-chaotic system, Chaos, 26, 7, 507-519, 2016 · doi:10.1063/1.4958296
[24] Ye, XL; Wang, XY; Gao, S.; Mou, J.; Wang, ZS; Yang, FF, A new chaotic circuit with multiple memristors and its application in image encryption, Nonlinear Dyn., 99, 1489-1506, 2020 · doi:10.1007/s11071-019-05370-2
[25] Bao, H.; Hua, ZY; Li, HZ; Chen, M.; Bao, BC, Discrete memristor hyperchaotic maps, IEEE Trans. Circuits Syst. I Regul. Pap., 68, 11, 4534-4544, 2021 · doi:10.1109/TCSI.2021.3082895
[26] Jiang, YC; Li, CB; Zhang, C.; Zhao, YB; Zang, HY, A double-memristor hyperchaotic oscillator with complete amplitude control, IEEE Trans. Circuits Syst. I Regul. Pap., 68, 12, 4935-4944, 2021 · doi:10.1109/TCSI.2021.3121499
[27] Sun, JY; Li, CB; Lu, TN; Akgul, A.; Min, FH, A memristive chaotic system with hypermultistability and its application in image encryption, IEEE Access., 8, 139289-139298, 2020 · doi:10.1109/ACCESS.2020.3012455
[28] Wu, HG; Ye, Y.; Bao, BC; Chen, M.; Xu, Q., Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system, Chaos Solitons Fractals, 121, 178-185, 2019 · Zbl 1448.34103 · doi:10.1016/j.chaos.2019.03.005
[29] Li, C.; Min, FH; Li, CB, Multiple coexisting attractors of the serial-parallel memristor-based chaotic system and its adaptive generalized synchronization, Nonlinear Dyn., 94, 2785-2806, 2018 · Zbl 1422.37020 · doi:10.1007/s11071-018-4524-3
[30] Ma, XJ; Mou, J.; Xiong, L.; Banerjee, S.; Cao, YH; Wang, JY, A novel chaotic circuit with coexistence of multiple attractors and state transition based on two memristors, Chaos Solitons Fractals, 152, 111363, 2021 · Zbl 1497.94194 · doi:10.1016/j.chaos.2021.111363
[31] Lin, HR; Wang, CH; Sun, YC; Wang, T., Generating-scroll chaotic attractors from a memristor-based magnetized hopfield neural network, IEEE Trans. Circuits-II., 70, 1, 311-315, 2022
[32] Liu, YZ; Jiang, CS; Lin, CS; Xiong, X.; Shi, L., A class of switchable 3D chaotic systems, Acta Phys. Sin., 56, 6, 3107-3112, 2007 · Zbl 1150.37341 · doi:10.7498/aps.56.3107
[33] Bao, BC; Luo, JY; Bao, H.; Chen, CJ; Wu, HG; Xu, Q., A simple nonautonomous hidden chaotic system with a switchable stable node-focus, Int. J. Bifurc. Chaos., 29, 12, 1950168, 2019 · Zbl 1435.34021 · doi:10.1142/S0218127419501682
[34] Yan, MX; Jie, JF, Fractional-order multiwing switchable chaotic system with a wide range of parameters, Chaos Solitons Fractals, 160, 112161, 2022 · Zbl 1504.34150 · doi:10.1016/j.chaos.2022.112161
[35] Ren, W.; Xiong, JL, Lyapunov conditions for stability of stochastic impulsive switched systems, IEEE Trans. Circuits Syst. I Regul. Pap., 65, 6, 1994-2004, 2017 · doi:10.1109/TCSI.2017.2771432
[36] Yan, MX; Liu, XD; Jie, JF; Hong, Y., Construction and implementation of wide range parameter switchable chaotic system, Sci. Rep., 14, 4059, 2024 · doi:10.1038/s41598-024-54458-2
[37] Aguirre-Hernández, B.; Campos-Cantón, E.; López-Renteria, JA; González, ED, A polynomial approach for generating a monoparametric family of chaotic attractors via switched linear systems, Chaos Solitons Fractals, 71, 100-106, 2015 · Zbl 1352.93055 · doi:10.1016/j.chaos.2014.12.012
[38] Zambrano, SE; Muñoz, PJM; Campos, CE, Chaos generation in fractional-order switched systems and its digital implementation, Aeu-Int. J. Electron C., 79, 43-52, 2017 · doi:10.1016/j.aeue.2017.05.032
[39] Sheng, ZB; Li, CB; Gao, YK; Li, ZN; Chai, L., A switchable chaotic oscillator with multiscale amplitude/frequency control, Sb. Math., 11, 3, 618, 2023 · doi:10.3390/math11030618
[40] Liu, YZ; Jiang, CS; Lin, CS; Sun, H., Four-dimensional switchable hyperchaotic system, Acta Phys. Sin., 56, 9, 5131-5135, 2007 · Zbl 1150.37340 · doi:10.7498/aps.56.5131
[41] Shi, SS; Du, CH; Liu, LC, Complex dynamics analysis and feedback control for a memristive switched chaotic system, Phys. Scr., 98, 12, 125232, 2023 · doi:10.1088/1402-4896/ad03cb
[42] Zhu, FL; Wang, FN; Ye, L., Artificial switched chaotic system used as transmitter in chaos-based secure communication, J. Frankl. Inst., 357, 15, 10997-11020, 2020 · Zbl 1458.94008 · doi:10.1016/j.jfranklin.2020.07.043
[43] Jia, N.; Wang, T., A class of new correlative and switchable hyperchaotic systems and their switch-synchronization, Symmetry., 13, 12, 2247, 2021 · doi:10.3390/sym13122247
[44] Shi, QY; Huang, X.; Yuan, F.; Li, YX, Design and FPGA implementation of multi-wing chaotic switched systems based on a quadratic transformation, Chin. Phys. B, 30, 2, 020507, 2021 · doi:10.1088/1674-1056/abd74c
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.