×

Levi-Civita connections for a class of spectral triples. (English) Zbl 1437.58007

The authors give a definition of Levi-Civita connection for spectral triples which satisfies existence and uniqueness in several examples: Connes-Dubois-Violette-Rieffel deformations of compact Riemannian manifolds obtained from free and isometric torus actions, quantum Heisenberg manifolds, the fuzzy 3-sphere, and Connes-Landi deformations of spectral triples. Levi-Civita connections as such, are defined on 1-forms instead of the derivations used in other approaches.

MSC:

58B34 Noncommutative geometry (à la Connes)
46L87 Noncommutative differential geometry

References:

[1] Arnlind, J.; Wilson, M., Riemannian curvature of the noncommutative 3-sphere, J. Noncommut. Geom., 11, 2, 507-536 (2017) · Zbl 1378.46053 · doi:10.4171/JNCG/11-2-3
[2] Arnlind, J.; Wilson, M., On the Gauss-Chern-Bonnet theorem for the noncommutative 4-sphere, J. Geom. Phys., 111, 126-141 (2017) · Zbl 1369.46065 · doi:10.1016/j.geomphys.2016.10.016
[3] Arnlind, J., Landi, G.: Projections, modules and connections for the noncommutative cylinder. arXiv:1901.07276 · Zbl 07435482
[4] Bassett, M.E., Majid, S.: Finite noncommutative geometries related to \(F_p[x]\). arXiv:1603.00426 · Zbl 1437.81043
[5] Beggs, EJ; Majid, S., \( \ast \)-Compatible connections in noncommutative Riemannian geometry, J. Geom. Phys., 61, 95-124 (2011) · Zbl 1211.53092 · doi:10.1016/j.geomphys.2010.09.002
[6] Beggs, EJ; Majid, S., Spectral triples from bimodule connections and Chern connections, J. Noncommut. Geom., 11, 2, 669-701 (2017) · Zbl 1373.58004 · doi:10.4171/JNCG/11-2-7
[7] Beggs, EJ; Majid, S., Quantum Riemannian Geometry, Grundlehren der mathematischen Wissenschaften (2019), Berlin: Springer, Berlin
[8] Bhowmick, J., Goswami, D., Joardar, S.: A new look at Levi-Civita connection in noncommutative geometry. arXiv:1606.08142 · Zbl 1491.58004
[9] Bhowmick, J., Goswami, D., Landi, G.: On the Koszul formula in noncommutative geometry (in preparation) · Zbl 1461.58003
[10] Bhowmick, J.: Quantum isometry groups, Ph.D. Thesis. arXiv:0907.0618 · Zbl 1381.81004
[11] Chakraborty, PS; Sinha, KB, Geometry on the quantum Heisenberg manifold, J. Funct. Anal., 203, 425-452 (2003) · Zbl 1031.46080 · doi:10.1016/S0022-1236(03)00197-6
[12] Cipriani, F.; Sauvagoet, J-L, Derivations as square roots of Dirichlet forms, J. Funct. Anal., 201, 78-120 (2003) · Zbl 1032.46084 · doi:10.1016/S0022-1236(03)00085-5
[13] Connes, A., Noncommutative Geometry (1994), San Diego: Academic Press, San Diego · Zbl 0818.46076
[14] Connes, A.; Dubois-Violette, M., Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples, Commun. Math. Phys., 230, 3, 539-579 (2002) · Zbl 1026.58005 · doi:10.1007/s00220-002-0715-2
[15] Connes, A.; Rieffel, MA, Yang-Mills for non-commutative two-tori, Contemp. Math., 62, 237-266 (1987) · Zbl 0633.46069 · doi:10.1090/conm/062/878383
[16] Connes, A.; Landi, G., Noncommutative manifolds the instanton algebra and isospectral deformations, Commun. Math. Phys., 221, 141-159 (2001) · Zbl 0997.81045 · doi:10.1007/PL00005571
[17] Connes, A., Tretkoff, P.: The Gauss-Bonnet theorem for the noncommutative two torus. In: Consani, C., Connes, A. (eds.) Noncommutative Geometry, Arithmetic, and Related Topics, pp. 141-158. Johns Hopkins University Press, Baltimore (2011) · Zbl 1251.46037
[18] Connes, A.; Moscovici, H., Modular curvature for noncommutative two-tori, J. Am. Math. Soc., 27, 639-684 (2014) · Zbl 1332.46070 · doi:10.1090/S0894-0347-2014-00793-1
[19] Connes, A., Fathizadeh, F.: The term \(a_4\) in the heat kernel expansion of noncommutative tori. arXiv:1611.09815 · Zbl 1433.58008
[20] Dabrowski, L.; Sitarz, A., Curved noncommutative torus and Gauss-Bonnet, J. Math. Phys., 54, 013518 (2013) · Zbl 1285.58014 · doi:10.1063/1.4776202
[21] Dabrowski, L.; Sitarz, A., An asymmetric noncommutative torus, SIGMA, 11, 075 (2015) · Zbl 1328.58005
[22] Dubois-Violette, M.; Michor, PW, Derivation et calcul differentiel non commutatif II, C. R. Acad. Sci. Paris Ser. I Math., 319, 927-931 (1994) · Zbl 0829.16028
[23] Fathizadeh, F.; Khalkhali, M., The Gauss-Bonnet theorem for noncommutative two tori with a general conformal structure, J. Noncommut. Geom., 6, 457-480 (2012) · Zbl 1256.58002 · doi:10.4171/JNCG/97
[24] Fathizadeh, F.; Khalkhali, M., Scalar curvature for the noncommutative two torus, J. Noncommut. Geom., 7, 1145-1183 (2013) · Zbl 1295.46053 · doi:10.4171/JNCG/145
[25] Fathizadeh, F.; Khalkhali, M., Scalar curvature for noncommutative four-tori, J. Noncommut. Geom., 9, 2, 473-503 (2015) · Zbl 1332.46071 · doi:10.4171/JNCG/198
[26] Floricel, R., Ghorbanpour, A., Khalkhali, M.: The Ricci curvature in noncommutative geometry. J. Noncommut. Geom. arXiv:1612.06688 · Zbl 1417.58003
[27] Frohlich, J.; Grandjean, O.; Recknagel, A., Supersymmetric quantum theory and differential geometry, Commun. Math. Phys., 193, 527-594 (1998) · Zbl 0910.53047 · doi:10.1007/s002200050339
[28] Frohlich, J.; Grandjean, O.; Recknagel, A., Supersymmetric quantum theory and non-commutative geometry, Commun. Math. Phys., 203, 119-184 (1999) · Zbl 0947.58010 · doi:10.1007/s002200050608
[29] Goswami, D., Quantum group of isometries in classical and noncommutative geometry, Commun. Math. Phys., 285, 141-160 (2009) · Zbl 1228.81188 · doi:10.1007/s00220-008-0461-1
[30] Heckenberger, I.; Schmuedgen, K., Levi-Civita connections on the quantum groups \({\rm SL}_q(N)O_q(N)\) and \({\rm Sp}_q(N)\), Commun. Math. Phys., 185, 177-196 (1997) · Zbl 0888.17007 · doi:10.1007/s002200050086
[31] Kajiwara, T.; Pinzari, C.; Watatani, Y., Jones index theory for Hilbert \(C{}^*\)-bimodules and its equivalence with conjugation theory, J. Funct. Anal., 215, 1-49 (2004) · Zbl 1067.46053 · doi:10.1016/j.jfa.2003.09.008
[32] Kang, S., The Yang-Mills functional and Laplace’s equation on quantum Heisenberg manifolds, J. Funct. Anal., 258, 1, 307-327 (2010) · Zbl 1186.58007 · doi:10.1016/j.jfa.2009.09.024
[33] Kang, S., Luef, F., Packer, J.A.: Yang-Mills connections on quantum Heisenberg manifolds. arXiv:1810.08486 · Zbl 1440.53024
[34] Landi, G., An Introduction to Noncommutative Spaces and their Geometries. Lecture notes in Physics monographs (1997), Berlin: Springer, Berlin · Zbl 0909.46060
[35] Lesch, M.; Moscovici, H., Modular curvature and Morita equivalence, Geom. Funct. Anal., 26, 3, 818-873 (2016) · Zbl 1375.46053 · doi:10.1007/s00039-016-0375-6
[36] Li, H., \( \theta \)-Deformations as compact quantum metric spaces, Commun. Math. Phys., 256, 213-238 (2005) · Zbl 1085.46048 · doi:10.1007/s00220-005-1318-5
[37] Liu, Y., Modular curvature for toric noncommutative manifolds, J. Noncommut. Geom., 12, 2, 511-575 (2018) · Zbl 1403.46056 · doi:10.4171/JNCG/285
[38] Majid, S., Noncommutative Riemannian and spin geometry of the standard q-sphere, Commun. Math. Phys., 256, 255-285 (2005) · Zbl 1075.58004 · doi:10.1007/s00220-005-1295-8
[39] Peterka, MA; Sheu, AJL, On noncommutative Levi-Civita connections, Int. J. Geom. Methods. Mod. Phys., 14, 5, 1750071 (2017) · Zbl 1377.46051 · doi:10.1142/S0219887817500712
[40] Rieffel, MA, Deformation quantization of Heisenberg manifolds, Commun. Math. Phys., 122, 531-562 (1989) · Zbl 0679.46055 · doi:10.1007/BF01256492
[41] Rieffel, MA, Deformation Quantization for Actions of \({\mathbb{R}}^d (1993)\), New York: Memoirs of the American Mathematical Society, New York · Zbl 0798.46053
[42] Rosenberg, J., Levi-Civita’s theorem for noncommutative tori, SIGMA, 9, 071 (2013) · Zbl 1291.46068
[43] Skeide, M., Hilbert modules in quantum electrodynamics and quantum probability, Commun. Math. Phys., 192, 3, 569-604 (1998) · Zbl 0928.46063 · doi:10.1007/s002200050310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.