×

Relationship between the field local quadrature and the quantum discord of a photon-added correlated channel under the influence of scattering and phase fluctuation noise. (English) Zbl 1387.81048

Summary: We study quantum correlations and discord in a bipartite continuous variable hybrid system formed by linear combinations of coherent states \(\mathinner {|{\alpha }\rangle }\) and single photon-added coherent states of the form \(|\psi\rangle_{\text{dp(pa)}}= \mathcal {N}/\sqrt{2} (\hat{a}^† |\alpha\rangle_a |\alpha\rangle_b \pm \hat{b}^† |\alpha\rangle_a|\alpha\rangle_b)\). We stablish a relationship between the quantum discord with a local observable (the quadrature variance for one subsystem) under the influence of scattering and phase fluctuation noise. For the pure states the quantum correlations are characterized by means of measurement induced disturbance (MID) with simultaneous quadrature measurements. In a scenario where homodyne conditional measurements are available we show that the MID provides an easy way to select optimal phases to obtain information of the maximal correlations in the channels. The quantum correlations of these entangled states with channel losses are quantitatively characterized with the quantum discord (QD) with a displaced qubit projector. We observe that as scattering increases, QD decreases monotonically. At the same time for the state \(|\psi\rangle_{\text{dp}}\), QD is more resistant to high phase fluctuations when the average photon number \(n_0\) is bigger than zero, but if phase fluctuations are low, QD is more resistant if \(n_0=0\). For the dp model with scattering, we obtain an analytical expression of the QD as a function of the observable quadrature variance in a local subsystem. This relation allows us to have a way to obtain the degree of QD in the channel by just measuring a local property observable such as the quadrature variance. For the other model this relation still exists but is explored numerically. This relation is an important result that allows to identify quantum processing capabilities in terms of just local observables.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
81V80 Quantum optics
81R30 Coherent states
94A40 Channel models (including quantum) in information and communication theory

References:

[1] Aolita, L., de Melo, F., Davidovich, L.: Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78, 042001 (2015) · doi:10.1088/0034-4885/78/4/042001
[2] Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. A Math. Phys. Eng. Sci. 459, 2011-2032 (2003) · Zbl 1092.81518 · doi:10.1098/rspa.2002.1097
[3] Driessen, E.F.C.: Single-photon detectors: fast and efficient. Nat. Photon. 7, 168-169 (2013) · doi:10.1038/nphoton.2013.37
[4] Mirza, I.M., Schotland, J.C.: Two-photon entanglement in multiqubit bidirectional-waveguide QED. Phys. Rev. A 94, 012309 (2016) · doi:10.1103/PhysRevA.94.012309
[5] Mirza, I.M.: Bi- and uni-photon entanglement in two-way cascaded fiber-coupled atom-cavity systems. Phys. Lett. Sect. A Gen. At. Solid State Phys. 379, 1643-1648 (2015) · Zbl 1323.81010
[6] Mirza, I.M., Schotland, J.C.: Multi-qubit entanglement in bi-directional chiral waveguide QED. Phys. Rev. A 94, 012302 (2016) · doi:10.1103/PhysRevA.94.012302
[7] O’Brien, J.L., Furusawa, A., Vučković, J.: Photonic quantum technologies. Nat. Photon. 3, 687-695 (2010) · doi:10.1038/nphoton.2009.229
[8] Togan, E., et al.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730-734 (2010) · doi:10.1038/nature09256
[9] Volz, J., et al.: Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006) · doi:10.1103/PhysRevLett.96.030404
[10] Stute, A., et al.: Tunable ion-photon entanglement in an optical cavity. Nature 485, 482-485 (2013) · doi:10.1038/nature11120
[11] Braunstein, S.L.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513-577 (2005) · Zbl 1205.81010 · doi:10.1103/RevModPhys.77.513
[12] Masada, G., et al.: Continuous-variable entanglement on a chip. Nat. Photon. 9, 316-319 (2015) · doi:10.1038/nphoton.2015.42
[13] Takeda, S., Mizuta, T., Fuwa, M., van Loock, P., Furusawa, A.: Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature 500, 315-318 (2013) · doi:10.1038/nature12366
[14] Sherson, J.F., et al.: Quantum teleportation between light and matter. Nature 443, 557-560 (2006) · doi:10.1038/nature05136
[15] Gu, M., et al.: Observing the operational significance of discord consumption. Nat. Phys. 8, 671-675 (2012) · doi:10.1038/nphys2376
[16] Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655-1707 (2012) · doi:10.1103/RevModPhys.84.1655
[17] Laflamme, R., Cory, D.G., Negrevergne, C., Viola, L.: NMR quantum information processing and entanglement. Quant. Inf. Comput. 2, 166-176 (2001) · Zbl 1187.81071
[18] Dakić, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666-670 (2012) · doi:10.1038/nphys2377
[19] Lanyon, B.P., et al.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013) · doi:10.1103/PhysRevLett.111.100504
[20] Benedetti, C., Shurupov, A.P., Paris, M.G.A., Brida, G., Genovese, M.: Experimental estimation of quantum discord for a polarization qubit and the use of fidelity to assess quantum correlations. Phys. Rev. A Atom. Mol. Opt. Phys. 87, 052136 (2013) · doi:10.1103/PhysRevA.87.052136
[21] Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010) · doi:10.1103/PhysRevA.81.052107
[22] Fernandes Fanchini, F., Soares Pinto, D.O., Adesso, G.: Lectures on General Quantum Correlations and Their Applications. Springer, Berlin (2017) · Zbl 1373.81001 · doi:10.1007/978-3-319-53412-1
[23] Xu, J.-S., Li, C.-F., Guo, G.-C.: Experimental Investigation of the Dynamics of Quantum Discord in Optical Systems, pp. 473-484. Springer, Cham (2017)
[24] Hosseini, S., et al.: Experimental verification of quantum discord in continuous-variable states. J. Phys. B Atom. Mol. Opt. Phys. 47, 025503 (2014) · doi:10.1088/0953-4075/47/2/025503
[25] Hosseini, S., et al.: Experimental verification of quantum discord in continuous-variable states and operational significance of discord consumption. In: Conference on Lasers and Electro-Optics Europe—Technical Digest 2014 January, 3-4 (2014)
[26] Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A Atom. Mol. Opt. Phys. 81, 052318 (2010) · doi:10.1103/PhysRevA.81.052318
[27] Jeong, H., Kim, M. S.: Efficient Quantum Computation Using Coherent States, pp. 1-6 (2001). arXiv:quant-ph/0109077v2
[28] Daoud, M., Laamara, R.A.: Quantum discord of Bell cat states under amplitude damping. J. Phys. A Math. Theor. 45, 325302 (2012) · Zbl 1253.81026 · doi:10.1088/1751-8113/45/32/325302
[29] Agarwal, G., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492-497 (1991) · doi:10.1103/PhysRevA.43.492
[30] Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660-662 (2004) · doi:10.1126/science.1103190
[31] Kenfack, A., Yczkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B Quantum Semiclassical Opt. 6, 396-404 (2004) · doi:10.1088/1464-4266/6/10/003
[32] Kim, M.S., Son, W., Bužek, V., Knight, P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002) · doi:10.1103/PhysRevA.65.032323
[33] Sekatski, P., et al.: Proposal for exploring macroscopic entanglement with a single photon and coherent states. Phys. Rev. A 86, 060301 (2012) · doi:10.1103/PhysRevA.86.060301
[34] Wang, S., Hou, L.-L., Chen, X.-F., Xu, X.-F.: Continuous-variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition. Phys. Rev. A 91, 063832 (2015) · doi:10.1103/PhysRevA.91.063832
[35] Jeong, H., et al.: Generation of hybrid entanglement of light. Nat. Photon. 8, 564-569 (2014) · doi:10.1038/nphoton.2014.136
[36] Kwon, H., Jeong, H.: Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A Atom. Mol. Opt. Phys. 91, 012340 (2015) · doi:10.1103/PhysRevA.91.012340
[37] Silva, M.B.C.E., Xu, Q., Agnolini, S., Gallion, P., Mendieta, F.J.: Homodyne QPSK detection for quantum key distribution. In: Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications. Technical Digest (CD), Optical Society of America (2006), Paper CFA2. doi:10.1364/COTA.2006.CFA2
[38] Chuan, W., Wan-Ying, W., Qing, A., Gui-Lu, L.: Deterministic quantum key distribution with pulsed homodyne detection. Commun. Theor. Phys. 53, 67-70 (2010) · Zbl 1220.81070 · doi:10.1088/0253-6102/53/1/15
[39] Paris, M.G.A., Cola, M., Bonifacio, R.: Remote state preparation and teleportation in phase space. J. Opt. B Quantum Semiclassical Opt. 5, S360-S364 (2003) · doi:10.1088/1464-4266/5/3/370
[40] Ye, B.-L., Liu, Y.-M., Xu, C.-J., Liu, X.-S., Zhang, Z.-J.: Quantum correlations in a family of two-qubit separable states. Commun. Theor. Phys. 60, 283-288 (2013) · Zbl 1284.81049 · doi:10.1088/0253-6102/60/3/05
[41] Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 44, 352002 (2011) · Zbl 1227.81075 · doi:10.1088/1751-8113/44/35/352002
[42] Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010) · doi:10.1103/PhysRevLett.104.080501
[43] Collett, M., Loudon, R., Gardiner, C.: Quantum theory of optical homodyne and heterodyne detection. J. Mod. Opt. 34, 881-902 (1987) · doi:10.1080/09500348714550811
[44] Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Oxford Science Publications, Oxford (2002) · Zbl 1027.81044 · doi:10.1093/acprof:oso/9780198563617.001.0001
[45] Audretsch, J.: Entangled Systems: New Directions in Quantum Physics, 1st edn. Wiley-VCH, Weinheim (2007) · Zbl 1136.81001 · doi:10.1002/9783527619153
[46] Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008) · doi:10.1103/PhysRevA.77.022301
[47] Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information, 1st edn. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[48] Olivares, S., Cialdi, S., Castelli, F., Paris, M.G.A.: Homodyne detection as a near-optimum receiver for phase-shift-keyed binary communication in the presence of phase diffusion. Phys. Rev. A At. Mol. Opt. Phys. 87, 1-4 (2013) · doi:10.1103/PhysRevA.87.050303
[49] Kumar, R., et al.: Versatile wideband balanced detector for quantum optical homodyne tomography. Opt. Commun. 285, 5259-5267 (2012) · doi:10.1016/j.optcom.2012.07.103
[50] Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001) · Zbl 1255.81071 · doi:10.1103/PhysRevLett.88.017901
[51] Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899-6905 (2001) · Zbl 0988.81023 · doi:10.1088/0305-4470/34/35/315
[52] Giorda, P., Allegra, M., Paris, M.G.A.: Quantum discord for Gaussian states with non-Gaussian measurements. Phys. Rev. A 86, 052328 (2012) · doi:10.1103/PhysRevA.86.052328
[53] Campos, R., Saleh, B., Teich, M.: Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. Phys. Rev. A 40, 1371-1384 (1989) · doi:10.1103/PhysRevA.40.1371
[54] Leonhardt, U.: Quantum physics of simple optical instruments. Rep. Prog. Phys. 66, 1207 (2003) · doi:10.1088/0034-4885/66/7/203
[55] Leonhardt, U.: Essential Quantum Optics: From Quantum Measurements to Black Holes, 1st edn. Cambridge University Press, Cambridge (2010) · doi:10.1017/CBO9780511806117
[56] Paris, M.G.A.: Displacement operator by beam splitter. Phys. Lett. Sect. A Gen. At. Solid State Phys. 217, 78-80 (1996)
[57] Ash, R.: Information Theory, 1st edn. Interscience, New York (1965) · Zbl 0141.34904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.