×

A gradient reproducing kernel based stabilized collocation method for the 5th order Korteweg-de Vries equations. (English) Zbl 07881970

MSC:

65D15 Algorithms for approximation of functions
65D30 Numerical integration
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Korteweg, D.; De Vries, G., On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary wave, Philos. Mag., 39, 422-443, 1895 · JFM 26.0881.02
[2] Zhang, J.; Wu, F., A simple method to construct soliton-like solution of the general KdV equation with external force, Commun. Nonlinear Sci. Numer. Simul., 5, 04, 170-173, 2000 · Zbl 0986.35102
[3] Flamarion, M. V., Complex flow structures beneath rotational depression solitary waves in gravity-capillary flows, Wave Motion, 117, Article 103108 pp., 2023 · Zbl 1524.76108
[4] Zhu, D.; Zhu, X., Exact multi-soliton solutions of the KdV equation with a source: Riemann-Hilbert formulation, Appl. Math. Lett., 149, Article 108919 pp., 2023 · Zbl 1529.35458
[5] Hou, S.; Zhang, R.; Zhang, Z.; Yang, L., On the Quartic Korteweg-de Vries hierarchy of nonlinear Rossby waves and its dynamics, Wave Motion, 124, Article 103249 pp., 2024 · Zbl 07825043
[6] Zhang, S., Exact solutions of a KdV equation with variable coefficients via Exp-function method, Nonlinear Dyn., 52, 1, 11-17, 2008 · Zbl 1173.35670
[7] Ganji, Z. Z.; Ganji, D. D.; Rostamiyan, Y., Solitary wave solutions for a time-fraction generalized Hirota-Satsuma coupled KdV equation by an analytical technique, Appl. Math. Model., 33, 7, 3107-3113, 2009 · Zbl 1205.35251
[8] Liu, H.; Li, J.; Liu, L., Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations, J. Math. Anal. Appl., 368, 2, 551-558, 2010 · Zbl 1192.35011
[9] Wang, G.; Kara, A. H.; Fakhar, K.; Vega-Guzman, J.; Biswas, A., Group analysis, exact solutions and conservation laws of a generalized fifth order KdV equation, Chaos Solitons Fract., 86, 8-15, 2016 · Zbl 1360.35232
[10] Selima, E. S.; Yao, X.; Wazwaz, A., Multiple and exact soliton solutions of the perturbed Korteweg-de Vries equation of long surface waves in a convective fluid via Painlevé analysis, factorization, and simplest equation methods, Phys. Rev. Lett., 95, 06, Article 062211 pp., 2017
[11] Kumar, V.; Kaur, L.; Kumar, A.; Koksal, M. E., Lie symmetry based-analytical and numerical approach for modified Burgers-KdV equation, Results Phys., 8, 1136-1142, 2018
[12] Wang, Z.; Liu, X., Bifurcations and exact traveling wave solutions for the KdV-like equation, Nonlinear Dyn., 95, 1, 465-477, 2019 · Zbl 1439.35435
[13] Huang, J.; Wang, M., New lower bounds on the radius of spatial analyticity for the KdV equation, J. Differ. Equ., 266, 9, 5278-5317, 2019 · Zbl 1412.35298
[14] Liu, J. G.; Yang, X. J.; Feng, Y. Y.; Cui, P., A new perspective to study the third-Order modified KdV equation on fractal set, Fractals, 28, 6, Article 2050110 pp., 2020 · Zbl 1445.28012
[15] Ismael, H. F.; Murad, M. A.; Bulut, H., Various exact wave solutions for KdV equation with time-variable coefficients, J. Ocean Eng. Sci., 7, 5, 409-418, 2021
[16] Karakoc, S. B.G.; Ali, K. K., New exact solutions and numerical approximations of the generalized kdv equation, Comput. Methods Differ. Equ., 9, 3, 670-691, 2021 · Zbl 1499.65668
[17] Boral, S.; Meylan, M. H.; Sahoo, T., Time-dependent wave propagation on a variable Winkler foundation with compression, Wave Motion, 106, Article 102792 pp., 2021 · Zbl 1524.74198
[18] Zhang, L.; Wang, J.; Shchepakina, E.; Sobolev, V., New type of solitary wave solution with coexisting crest and trough for a perturbed wave equation, Nonlinear Dyn., 106, 4, 3479-3493, 2021
[19] Shakeel, M.; Alaoui, M. K.; Zidan, A. M.; Shah, N. A., Closed form solutions for the generalized fifth-order KDV equation by using the modified exp-function method, J. Ocean Eng. Sci., 6, 37, 1-22, 2022
[20] Akbulut, A.; Kaplan, M.; Kaabar, M. K.A., New conservation laws and exact solutions of the special case of the fifth-order KdV equation, J. Ocean Eng. Sci., 7, 4, 377-382, 2022
[21] Cai, N.; Qiao, Z.; Zhou, Y., Wave solutions to an integrable negative order KdV equation, Wave Motion, 116, Article 103072 pp., 2023 · Zbl 1524.35518
[22] Vliegenthart, A. C., On finite-difference methods for the Korteweg-de Vries equation, J. Eng. Math., 5, 2, 137-155, 1971 · Zbl 0221.76003
[23] Zheng, Y. G.; Liu, Z. R.; Huang, D. B., Discrete soliton-like for KdV prototypes, Chaos Solit. Fract., 14, 7, 989-994, 2002 · Zbl 1038.35108
[24] Başhan, A., A mixed algorithm for numerical computation of soliton solutions of the coupled KdV equation: Finite difference method and differential quadrature method, Appl. Math. Comput., 360, 42-57, 2019 · Zbl 1429.65234
[25] Geyikli, T.; Kaya, D., Comparison of the solutions obtained by B-spline FEM and ADM of KdV equation, Appl. Math. Comput., 169, 1, 146-156, 2005 · Zbl 1121.65353
[26] Zaki, S. I., A quintic B-spline finite elements scheme for the KdVB equation, Comput. Meth. Appl. Mech. Eng., 188, 1-3, 121-134, 2000 · Zbl 0957.65088
[27] Karczewska, A.; Rozmej, P.; Szczeciński, M.; Boguniewicz, B., Finite element method for extended KdV equations, Int. J. Appl. Math. Comput. Sci., 26, 3, 555-567, 2016 · Zbl 1347.65153
[28] Bai, D.; Zhang, L., The finite element method for the coupled Schrödinger-KdV equations, Phys. Lett. A, 373, 26, 2237-2244, 2009 · Zbl 1231.35224
[29] Liu, H.; Yi, N., A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg-de Vries equation, J. Comput. Phys., 321, 776-796, 2016 · Zbl 1349.65462
[30] Yi, N.; Huang, Y.; Liu, H., A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: energy conservation and boundary effect, J. Comput. Phys., 242, 351-366, 2013 · Zbl 1297.65122
[31] Boyd, J. P., Trouble with Gegenbauer reconstruction for defeating Gibbs’ phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations, J. Comput. Phys., 204, 1, 253-264, 2005 · Zbl 1071.65189
[32] O. Dubrule, C. Kostov, An interpolation method taking into account inequality constraints: I. Methodology, Math. Geol. 18 (1) (1986) 33-51. https://doi.org/0882 8121/86/0100-0033505.00/0.
[33] Bellman, R.; Kashef, B. G.; Casti, J., Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations, J. Comput. Phys., 10, 40-52, 1972 · Zbl 0247.65061
[34] Başhan, A., An effective application of differential quadrature method based on modified cubic B-splines to numerical solutions of the KdV equation, Turk. J. Math., 42, 373-394, 2018 · Zbl 1424.65179
[35] Başhan, A.; Yağmurlu, N.; Uçar, Y.; Esen, A., A new perspective for the numerical solutions of the cmKdV equation via modified cubic B-spline differential quadrature method, Int. J. Mod. Phys. C, 2018
[36] Başhan, A., An efficient approximation to numerical solutions for the Kawahara equation via modified cubic B-Spline differential quadrature method, Mediterr. J. Math., 16, 2019 · Zbl 1530.65136
[37] Başhan, A., A novel approach via mixed Crank-Nicolson scheme and differential quadrature method for numerical solutions of solitons of mKdV equation, Pramana - J. Phys., 92, 6, 84, 2019
[38] Başhan, A., An effective approximation to the dispersive soliton solutions of the coupled KdV equation via combination of two efficient methods, Comput. Appl. Math., 39, 2, 80, 2020 · Zbl 1449.65296
[39] Başhan, A., Bell-shaped soliton solutions and travelling wave solutions of the fifth-order nonlinear modified Kawahara equation, Int. J. Nonlinear Sci. Numer. Simul., 22, 6, 781-795, 2021 · Zbl 07486822
[40] Başhan, A., Highly efficient approach to numerical solutions of two different forms of the modified Kawahara equation via contribution of two effective methods, Math. Comput. Simul., 179, 111-125, 2021 · Zbl 1524.65314
[41] Başhan, A., Modification of quintic B-spline differential quadrature method to nonlinear Korteweg-de Vries equation and numerical experiments, Appl. Numer. Math., 167, 356-374, 2021 · Zbl 1466.41005
[42] Başhan, A., A novel outlook to the mKdV equation using the advantages of a mixed method, Appl. Anal., 102, 1, 65-87, 2023 · Zbl 1509.65021
[43] Krige, D. G., A statistical approach to some basic mine valuation problems on the Wit-watersrand, J. S. Afr. Inst. Min. Metall., 52, 6, 119-139, 1951
[44] Hardy, R. L., Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., 76, 8, 1905-1915, 1971
[45] Duchon, J., Splines minimizing rotation-invariant semi-norms in Sobolev spaces, Const. Theory Funct. Sev. Variabl.: Proc. Conf. Held Oberwolfach, 85-100, 1977 · Zbl 0342.41012
[46] Kansa, E. J., Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19, 8-9, 147-161, 1990 · Zbl 0850.76048
[47] Wang, L., Radial basis functions methods for boundary value problems: performance comparison, Eng. Anal. Bound. Elem., 84, 191-205, 2017 · Zbl 1403.65179
[48] Wang, L.; Wang, Z.; Qian, Z., A meshfree method for inverse wave propagation using collocation and radial basis functions, Comput. Meth. Appl. Mech. Eng., 322, 1, 311-350, 2017 · Zbl 1439.74492
[49] Yang, J. P.; Chen, Y. C., Gradient enhanced localized radial basis collocation method for inverse analysis of cauchy problems, Int. J. Appl. Mech., 12, 09, Article 2050107 pp., 2020
[50] Wang, L.; Qian, Z.; Zhou, Y.; Peng, Y., A weighted meshfree collocation method for incompressible flows using radial basis functions, Int. J. Mech. Sci., 401, Article 108964 pp., 2020 · Zbl 1453.65364
[51] Wang, L.; Liu, Y.; Zhou, Y.; Yang, F., Static and dynamic analysis of thin functionally graded shell with in-plane material inhomogeneity, Int. J. Mech. Sci., 193, Article 106165 pp., 2021
[52] Hosseini, S.; Rahimi, G., Nonlinear bending analysis of hyperelastic plates using FSDT and meshless collocation method based on radial basis function, Int. J. Appl. Mech., 13, 01, Article 2150007 pp., 2021
[53] Kumar, S.; Jiwari, R.; Mittal, R. C., Radial basis functions based meshfree schemes for the simulation of non-linear extended Fisher-Kolmogorov model, Wave Motion, 109, Article 102863 pp., 2022 · Zbl 1525.65105
[54] Dehghan, M.; Shokri, A., A numerical method for KdV equation using collocation and radial basis functions, Nonlinear Dyn., 50, 1, 111-120, 2007 · Zbl 1185.76832
[55] Seydaoğlu, M., A meshless two-stage scheme for the fifth-order dispersive models in the science of waves on water, Ocean Eng., 250, Article 111014 pp., 2022
[56] Dağ, İ.; Dereli, Y., Numerical solutions of KdV equation using radial basis functions, Appl. Math. Model., 32, 4, 535-546, 2008 · Zbl 1132.65096
[57] Shen, Q., A meshless method of lines for the numerical solution of KdV equation using radial basis functions, Eng. Anal. Bound. Elem., 33, 10, 1171-1180, 2009 · Zbl 1253.76101
[58] Mohyud-Din, S. T.; Negahdary, E.; Usman, M., A meshless numerical solution of the family of generalized fifth-order Korteweg-de Vries equations, Int. J. Numer. Methods Heat Fluid Flow, 22, 5, 641-658, 2012 · Zbl 1357.65264
[59] Uddin, M.; Haq, S., Numerical solution of complex modified Korteweg-de Vries equation by mesh-free collocation method, Comput. Math. Appl., 58, 3, 566-578, 2009 · Zbl 1189.65239
[60] Kaya, D.; Gülbahar, S.; Yokuş, A.; Gülbahar, M., Solutions of the fractional combined KdV-mKdV equation with collocation method using radial basis function and their geometrical obstructions, Adv. Differ. Equ., 2018, 1, 1-16, 2018 · Zbl 1445.65033
[61] Sagar, B.; Ray, S. Saha, Numerical solution of fractional Kersten-Krasil’shchik coupled KdV-mKdV system arising in shallow water waves, Comput. Appl. Math., 41, 6, 1-24, 2022 · Zbl 1513.35137
[62] Rippa, S., An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv. Comput. Math., 11, 2, 193-210, 1999 · Zbl 0943.65017
[63] Gherlone, M.; Iurlaro, L.; Di Sciuva, M., A novel algorithm for shape parameter selection in radial basis functions collocation method, Compos. Struct., 94, 2, 453-461, 2012
[64] Wang, L.; Chu, F.; Zhong, Z., Study of radial basis collocation method for wave propagation, Eng. Anal. Bound. Elem., 37, 2, 453-463, 2013 · Zbl 1352.65402
[65] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, International Journal for Numerical Methods in Fluids Int. J. Numer. Methods Fluids, 20, 8-9, 1081-1106, 1995 · Zbl 0881.76072
[66] Liu, W. K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. Numer. Methods Eng., 38, 10, 1655-1679, 1995 · Zbl 0840.73078
[67] Liu, W. K.; Li, S.; Belytschko, T., Moving least-square reproducing kernel methods (I) methodology and convergence, Comput. Meth. Appl. Mech. Eng., 143, 1-2, 113-154, 1997 · Zbl 0883.65088
[68] Li, S.; Liu, W. K., Moving least square reproducing kernel method part II: Fourier analysis, Comput. Meth. Appl. Mech. Eng., 139, 159-194, 1996 · Zbl 0883.65089
[69] Li, S.; Liu, W. K., Synchronized reproducing kernel interpolant via multiple wavelet expansion, Comput. Mech., 21, 28-47, 1998, 50281 · Zbl 0912.76057
[70] Wang, D.; Wang, J.; Wu, J., Arbitrary order recursive formulation of meshfree gradients with application to superconvergent collocation analysis of Kirchhoff plates, Comput. Mech., 65, 3, 877-903, 2020 · Zbl 1477.74123
[71] Deng, L.; Wang, D.; Qi, D., A least squares recursive gradient meshfree collocation method for superconvergent structural vibration analysis, Comput. Mech., 68, 5, 1063-1096, 2021 · Zbl 1479.74134
[72] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. Methods Eng., 50, 2, 435-466, 2001, 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A · Zbl 1011.74081
[73] Chen, J. S.; Zhang, X.; Belytschko, T., An implicit gradient model by a reproducing kernel strain regularization in strain localization problems, Comput. Meth. Appl. Mech. Eng., 193, 27-29, 2827-2844, 2004 · Zbl 1067.74564
[74] Li, S.; Liu, W. K., Reproducing kernel hierarchical partition of unity Part I: formulation and theory, Int. J. Numer. Methods Eng., 45, 251-288, 1999, 10.1002/(SICI)1097-0207(19990530)45:3<251::AID-NME583>3.0.CO;2-I
[75] Li, S.; Liu, W. K., Reproducing kernel hierarchical partition of unity Part II: Applications, Int. J. Numer. Methods Eng., 45, 1999, 10.1002/(SICI)1097-0207(19990530)45:3<289::AID-NME584>3.0.CO;2-P
[76] Chi, S. W.; Chen, J. S.; Hu, H. Y.; Yang, J. P., A gradient reproducing kernel collocation method for boundary value problems, Int. J. Numer. Methods Eng., 93, 13, 1381-1402, 2013 · Zbl 1352.65562
[77] Mahdavi, A.; Chi, S.; Zhu, H., A Gradient reproducing kernel collocation method for high order differential equations, Comput. Mech., 64, 5, 1421-1454, 2019 · Zbl 1470.74074
[78] Wang, L.; Liu, Y.; Zhou, Y.; Yang, F., A gradient reproducing kernel based stabilized collocation method for the static and dynamic problems of thin elastic beams and plates, Comput. Mech., 68, 4, 709-739, 2021 · Zbl 1478.74087
[79] Liu, Y.; Wang, L.; Zhou, Y.; Yang, F., A stabilized collocation method based on the efficient gradient reproducing kernel approximations for the boundary value problems, Eng. Anal. Bound. Elem., 132, 446-459, 2021 · Zbl 1521.65130
[80] Tan, M.; Cheng, J.; Shu, C., Stability of high order finite difference and local discontinuous Galerkin schemes with explicit-implicit-null time-marching for high order dissipative and dispersive equations, J. Comput. Phys., 464, Article 1111314 pp., 2022 · Zbl 07540358
[81] Habibe, R. A.; Mohammad, K.; Mohammadreza, Y., Leave-Two-Out Cross Validation to optimal shape parameter in radial basis functions, Eng. Anal. Bound. Elem., 100, 204-210, 2019 · Zbl 1464.65011
[82] Qian, Z.; Wang, L.; Gu, Y.; Zhang, C., An efficient meshfree gradient smoothing collocation method (GSCM) using reproducing kernel approximation, Comput. Meth. Appl. Mech. Eng., 374, Article 113573 pp., 2021 · Zbl 1506.74501
[83] Wang, L.; Qian, Z., A meshfree stabilized collocation method (SCM) based on reproducing kernel approximation, Comput. Meth. Appl. Mech. Eng., 371, Article 113303 pp., 2020 · Zbl 1506.65237
[84] Wang, L.; Hu, M.; Zhong, Z.; Yang, F., Stabilized Lagrange interpolation collocation method: A meshfree method incorporating the advantages of finite element method, Comput. Meth. Appl. Mech. Eng., 404, Article 115780 pp., 2023 · Zbl 1536.65156
[85] Q. Tao, L. Ji, J.K. Ryan, Y. Xu, Accuracy-enhancement of discontinuous Galerkin methods for PDEs containing high order spatial derivatives, J. Sci. Comput. 93 (22) (2022). 10.1007/s10915-022-01967-9. · Zbl 1497.65183
[86] Rubin, S. G.; Graves, R. A., Viscous flow solutions with a cubic spline approximation, Comput. Fluids, 3, 1, 1-36, 1975 · Zbl 0347.76020
[87] Pandit, S., Local radial basis functions and scale-3 Haar wavelets operational matrices based numerical algorithms for generalized regularized long wave model, Wave Motion, 109, Article 102846 pp., 2022 · Zbl 1524.65675
[88] Salas, A., Some solutions for a type of generalized Sawada-Kotera equation, Appl. Math. Comput., 196, 2, 812-817, 2008 · Zbl 1132.35461
[89] Zhao, F.; Wang, X.; Jie, O., An improved element-free Galerkin method for solving the generalized fifth-order Korteweg-de Vries equation, Chin. Phys. B, 22, Article 074704 pp., 2013
[90] A. Parker, On soliton solutions of the Kaup-Kupershmidt equation. I. Direct bilinearisation and solitary wave, Physica D. 137 (1-2) (2000) 25-33. 10.1016/S0167-2789(99)00166-9. · Zbl 0943.35088
[91] Shen, J., A new Dual-Petrov-Galerkin method for third and higher odd-order differential equations: application to the KDV equation, SIAM J. Num. Anal., 41, 1595-1619, 2003 · Zbl 1053.65085
[92] Yuan, J.; Wu, J., A dual-Petrov-Galerkin method for two integrable fifth-order KdV type equations, Discret. Contin. Dyn. Syst., 26, 4, 1525-1536, 2010 · Zbl 1184.35287
[93] Zhou, D., Non-homogeneous initial-boundary-value problem of the fifth-order Korteweg-de Vries equation with a nonlinear dispersive term, J. Math. Anal. Appl., 491, 1, Article 124848 pp., 2021 · Zbl 1462.35343
[94] Wang, X.; Dai, W.; Usman, M., A high-order accurate finite difference scheme for the KdV equation with time-periodic boundary forcing, Appl. Numer. Math., 160, 102-121, 2021 · Zbl 1459.76094
[95] Flamarion, M. V.; Ribeiro-Jr, R., Gravity-capillary flows over obstacles for the fifth-order forced Korteweg-de Vries equation, J. Eng. Math., 129, 17, 2021 · Zbl 1497.76020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.