×

A globally convergent numerical method for coefficient inverse problems for thermal tomography. (English) Zbl 1231.65203

The authors present a globally convergent numerical method for coefficient inverse problems of elliptic partial differential equations. Generally, the solutions of inverse problems in gradient-based optimization methods are vitally influenced by the initial guesses, which is known as the issue of local minima. Due to this issue, the gradient-based optimization methods can limit their applications that admit variety of initial approximations. Hence, in this work, the authors give a method that converges to a good approximation being independent of the initial conditions (i.e., the authors refer to it as global convergence). The method is rigorously derived and numerically tested for a thermal tomography problem.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J60 Nonlinear elliptic equations
35R30 Inverse problems for PDEs
92C50 Medical applications (general)
Full Text: DOI

References:

[1] DOI: 10.1088/0266-5611/15/2/022 · Zbl 0926.35155 · doi:10.1088/0266-5611/15/2/022
[2] DOI: 10.1515/156939405775199479 · Zbl 1090.65146 · doi:10.1515/156939405775199479
[3] DOI: 10.1137/S0036139900377366 · Zbl 0993.35090 · doi:10.1137/S0036139900377366
[4] DOI: 10.1088/0266-5611/16/5/309 · Zbl 0974.49021 · doi:10.1088/0266-5611/16/5/309
[5] Klibanov MV, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. (2004)
[6] DOI: 10.1515/JIIP.2008.048 · Zbl 1152.34312 · doi:10.1515/JIIP.2008.048
[7] DOI: 10.1364/JOSAA.26.000456 · doi:10.1364/JOSAA.26.000456
[8] DOI: 10.1088/0266-5611/24/2/025006 · Zbl 1154.35473 · doi:10.1088/0266-5611/24/2/025006
[9] DOI: 10.1080/00036811003649157 · Zbl 1191.65146 · doi:10.1080/00036811003649157
[10] DOI: 10.1137/070711414 · Zbl 1185.65175 · doi:10.1137/070711414
[11] Alfano RR, J. Opt. Soc. Am. 6 pp 1015– (1989)
[12] Pennes HH, J. Appl. Physiol. 1 pp 93– (1948)
[13] Wissler EH, J. Appl. Physiol. 85 pp 31– (1998)
[14] Ladyzhenskaya OA, Linear and Quasilinear Elliptic Equations (1969)
[15] Kabanikhin SI, Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems (2004)
[16] Evans LC, Partial Differential Equations (1998)
[17] Corbett R, Am. J. Neuroradiol. 20 pp 1851– (1999)
[18] DOI: 10.1016/j.ijheatmasstransfer.2009.02.011 · Zbl 1167.80318 · doi:10.1016/j.ijheatmasstransfer.2009.02.011
[19] DOI: 10.1016/j.brainresrev.2005.04.001 · doi:10.1016/j.brainresrev.2005.04.001
[20] DOI: 10.1114/1.1554924 · doi:10.1114/1.1554924
[21] DOI: 10.1038/jcbfm.1987.127 · doi:10.1038/jcbfm.1987.127
[22] DOI: 10.3923/jas.2009.962.967 · doi:10.3923/jas.2009.962.967
[23] DOI: 10.1364/AO.38.002927 · doi:10.1364/AO.38.002927
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.