×

Multidimensional inverse problem for isotropic elasticity system in a sphere. (English) Zbl 1142.35099

In this paper, the identification of the elastic properties of a sphere is investigated. The inverse problem requires finding the deflection \(u(r,\theta,\varphi)\) together with the density \(\rho(r)> 0\) and the perturbation velocities of longitudinal waves \(c^2_0\ll c_1(r,\theta,\varphi)= c^2(r,\theta,\varphi)- c^2_0\), where \(c_0\) is known, and transverse \(a^2_0\ll a_1(r,\theta,\varphi)= a^2(r,\theta,\varphi)- a^2_0\), where \(a_0\) is known, \(c= (\lambda+ 2\mu)/\rho\), \(a= \mu/\rho\), \(\lambda\) and \(\mu\) are the Lamé parameters satisfying the Lamé equations of transient isotropic elsaticity
\[ \rho{\partial^2\underline u\over\partial t^2}= \mu\Delta\underline u+(\lambda+ \mu)\nabla(\nabla\cdot\underline u)+ (\nabla\cdot\underline u)\nabla\lambda+ (\nabla\underline u+(\nabla\underline u)^{\text{tr}})\nabla\mu \]
in \(B(0,1)\) together with the initial condition \(\underline u|_{t< 0}= 0\) on \(B(0,1)\) and the Cauchy boundary conditions on \(\partial B(0,1)\)
\[ \underline u|_{r= 1}=\underline h(t,\theta,\varphi)\quad\text{on }\partial B(0,1)\times [0,T], \]
\[ (\lambda\nabla\cdot\underline u+\mu(\nabla\underline u+(\nabla\underline u)^{\text{tr}})\underline e_r|_{r=1}= {1\over\sqrt{2\pi}} q(t)\underline i. \] Uniqueness and conditional stability estimates are provided.

MSC:

35R30 Inverse problems for PDEs
35B35 Stability in context of PDEs
74B05 Classical linear elasticity
Full Text: DOI

References:

[1] DOI: 10.1364/JOSAB.6.001015 · doi:10.1364/JOSAB.6.001015
[2] DOI: 10.1088/0266-5611/15/2/022 · Zbl 0926.35155 · doi:10.1088/0266-5611/15/2/022
[3] DOI: 10.1515/156939405775199479 · Zbl 1090.65146 · doi:10.1515/156939405775199479
[4] DOI: 10.1088/0266-5611/13/5/002 · Zbl 0990.35135 · doi:10.1088/0266-5611/13/5/002
[5] DOI: 10.1515/jiip.1999.7.3.221 · Zbl 0927.35129 · doi:10.1515/jiip.1999.7.3.221
[6] Burov V. A., Acoust. Imaging 26 pp 2318– (2002)
[7] DOI: 10.1137/S0036139900377366 · Zbl 0993.35090 · doi:10.1137/S0036139900377366
[8] DOI: 10.1070/RM2000v055n06ABEH000333 · Zbl 1022.81057 · doi:10.1070/RM2000v055n06ABEH000333
[9] DOI: 10.1364/AO.38.002927 · doi:10.1364/AO.38.002927
[10] DOI: 10.1088/0266-5611/16/5/309 · Zbl 0974.49021 · doi:10.1088/0266-5611/16/5/309
[11] DOI: 10.1088/0266-5611/23/1/006 · Zbl 1115.65111 · doi:10.1088/0266-5611/23/1/006
[12] DOI: 10.2307/2118653 · Zbl 0857.35135 · doi:10.2307/2118653
[13] Novikov R. G., J. Funk. Anal. 103 pp 40963– (1992)
[14] DOI: 10.1088/0266-5611/16/3/310 · Zbl 0962.35193 · doi:10.1088/0266-5611/16/3/310
[15] DOI: 10.1088/0266-5611/24/2/025006 · Zbl 1154.35473 · doi:10.1088/0266-5611/24/2/025006
[16] DOI: 10.1364/JOSAA.23.002388 · doi:10.1364/JOSAA.23.002388
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.