×

Total variation with overlapping group sparsity for deblurring images under Cauchy noise. (English) Zbl 1428.94021

Summary: The methods based on the total variation are effective for image deblurring and denoising, which can preserve edges and details of images. However, these methods usually produce some staircase effects. In order to alleviate the staircase effects, we propose a new convex model based on the total variation with overlapping group sparsity for recovering blurred images corrupted by Cauchy noise. Moreover, we develop an algorithm under the framework of the alternating direction method with multipliers, and use the majorization minimization to solve subproblems of the proposed algorithm. Numerical results illustrate that the proposed method outperforms other methods both in visual effects and quantitative measures, such as the peak signal-to-noise ratio and the structural similarity index.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing

Software:

UNLocBoX; RecPF; DnCNN
Full Text: DOI

References:

[1] Afonso, M. V.; Bioucas-Dias, J. M.; Figueiredo, M. A.T., An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems, IEEE Trans. Image Process., 20, 3, 681-695 (2011) · Zbl 1372.94004
[2] Benning, M.; Brune, C.; Burger, M.; Müller, J., Higher-order TV methods enhancement via Bregman iteration, J. Sci. Comput., 54, 2, 269-310 (2013) · Zbl 1308.94012
[3] Bertsekas, D. P.; Nedic, A.; Ozdaglar, A. E., Convex analysis and Optimization (2003), Athena Scientific · Zbl 1140.90001
[4] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1, 1-122 (2011) · Zbl 1229.90122
[5] Burger, M.; He, L.; Schönlieb, C. B., Cahn-Hilliard inpainting and a generalization for grayvalue images, SIAM J. Imaging Sci., 2, 4, 1129-1167 (2009) · Zbl 1180.49007
[6] Cai, J.-F.; Osher, S.; Shen, Z., Split bregman methods and frame based image restoration, Multiscale Model. Simul., 8, 2, 337-369 (2010) · Zbl 1189.94014
[7] Chambolle, A.; Lions, P. L., Image recovery via total variation minimization and related problems, Numer. Math., 76, 2, 167-188 (1997) · Zbl 0874.68299
[8] Chambolle, A.; Pock, T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imag. Vis., 40, 1, 120-145 (2011) · Zbl 1255.68217
[9] Chan, R. H.; Dong, Y.; Hintermuller, M., An efficient two-phase L1-TV method for restoring blurred images with impulse noise, IEEE Trans. Image Process., 19, 7, 1731-1739 (2010) · Zbl 1371.94074
[10] Chan, R. H.; Tao, M.; Yuan, X., Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers, SIAM J. Imag. Sci., 6, 1, 680-697 (2013) · Zbl 1279.68322
[11] Chan, T.; Marquina, A.; Mulet, P., High-order total variation-based image restoration, SIAM J. Sci. Comput., 22, 2, 503-516 (2000) · Zbl 0968.68175
[12] Chan, T. F.; Esedoglu, S.; Park, F. E., Image decomposition combining staircase reduction and texture extraction, J. Vis. Commun. Image Represent., 18, 6, 464-486 (2007)
[13] Chang, Y.; Kadaba, S.; Doerschuk, P.; Gelfand, S., Image restoration using recursive Markov random field models driven by Cauchy distributed noise, IEEE Signal Process. Lett., 8, 3, 65-66 (2001)
[14] Chen, D.-L.; Chen, Y.-Q.; Xue, D.-Y., Fractional-order total variation image denoising based on proximity algorithm, Appl. Math. Comput., 257, 537-545 (2015) · Zbl 1338.68273
[15] Combettes, P. L.; Pesquet, J. C., Proximal splitting methods in signal processing, Heinz H Bauschke, 49, 185-212 (2009) · Zbl 1242.90160
[16] Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K., Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16, 8, 2080-2095 (2007)
[17] Deng, L.-J.; Guo, W.-H.; Huang, T.-Z., Single-image super-resolution via an iterative reproducing kernel hilbert space method, IEEE Trans. Circ. Syst. Video Technol., 26, 11, 2001-2014 (2016)
[18] Dobson, D. C.; Santosa, F., Recovery of blocky images from noisy and blurred data, SIAM J. Appl. Math., 56, 4, 1181-1198 (1996) · Zbl 0858.68121
[19] Dong, Y.-Q.; Zeng, T.-Y., A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6, 3, 1598-1625 (2013) · Zbl 1283.52012
[20] Eckstein, J.; Bertsekas, D. P., On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Prog., 55, 1, 293-318 (1992) · Zbl 0765.90073
[21] Elad, M.; Aharon, M., Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15, 12, 3736-3745 (2006)
[22] Escande, P.; Weiss, P.; Zhang, W.-X., A variational model for multiplicative structured noise removal, J. Math. Imag. Vis., 57, 1, 43-55 (2017) · Zbl 1380.94019
[23] Esser, E.; Zhang, X.-Q.; Chan, T. F., A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imag. Sci., 3, 4, 1015-1046 (2010) · Zbl 1206.90117
[24] Fergus, R.; Singh, B.; Hertzmann, A.; Roweis, S. T.; Freeman, W. T., Removing camera shake from a single photograph, ACM Trans. Graph., 25, 3, 787-794 (2006) · Zbl 1371.94125
[25] Figueiredo, M.; Bioucas-Dias, J. M.; Nowak, R. D., Majorization-minimization algorithms for wavelet-based image restoration, IEEE Trans. Image Process., 16, 12, 2980-2991 (2007)
[26] Goldstein, T.; O’Donoghue, B.; Setzer, S.; Baraniuk, R., Fast alternating direction optimization methods, SIAM J. Imag. Sci., 7, 3, 1588-1623 (2014) · Zbl 1314.49019
[27] Goldstein, T.; Osher, S., The split Bregman method for L1-regularized problems, SIAM J. Imag. Sci., 2, 2, 323-343 (2009) · Zbl 1177.65088
[28] Gonzalez, J. G.; Arce, G. R., Optimality of the myriad filter in practical impulsive-noise environments, IEEE Trans. Signal Process., 49, 2, 438-441 (2001)
[29] He, B.-S.; Yang, H., Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities, Oper. Res. Lett., 23, 3, 151-161 (1998) · Zbl 0963.49006
[30] He, B.-S.; Yuan, X., On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method, SIAM J. Numer. Anal., 50, 2, 700-709 (2012) · Zbl 1245.90084
[31] Idan, M.; Speyer, J. L., Cauchy estimation for linear scalar systems, IEEE Trans. Autom. Control, 55, 6, 1329-1342 (2010) · Zbl 1368.93683
[32] Ji, T.-Y.; Huang, T.-Z.; Zhao, X.-L.; Ma, T.-H.; Deng, L.-J., A non-convex tensor rank approximation for tensor completion, Appl. Math. Modell., 48, 410-422 (2017) · Zbl 1480.90259
[33] Ji, T.-Y.; Huang, T.-Z.; Zhao, X.-L.; Ma, T.-H.; Liu, G., Tensor completion using total variation and low-rank matrix factorization, Inf. Sci., 326, 243-257 (2016) · Zbl 1387.94038
[34] Jiang, T.-X.; Huang, T.-Z.; Zhao, X.-L.; Ji, T.-Y.; Deng, L.-J., Matrix factorization for low-rank tensor completion using framelet prior, Inf. Sci., 436, 403-417 (2018) · Zbl 1448.15015
[35] D. Krishnan, R. Fergus, Fast image deconvolution using hyper-Laplacian priors, in: Neural Information Processing Systems (2009).; D. Krishnan, R. Fergus, Fast image deconvolution using hyper-Laplacian priors, in: Neural Information Processing Systems (2009).
[36] Kuruoglu, E. E.; Fitzgerald, W. J.; Rayner, P. J.W., Near optimal detection of signals in impulsive noise modeled with a symmetric \(α\)-stable distribution, IEEE Commun. Lett., 2, 10, 282-284 (1998)
[37] Laus, F.; Pierre, F.; Steidl, G., Nonlocal myriad filters for cauchy noise removal, J. Math. Imaging Vis., 60, 8, 1324-1354 (2018) · Zbl 1435.94030
[38] Li, F.; Lv, X.-G., A Decoupled method for image inpainting with patch-based low rank regulariztion, Appl. Math. Comput., 314, 334-348 (2017) · Zbl 1426.94019
[39] Liu, J.; Huang, T.-Z.; Selesnick, I. W.; Lv, X.-G.; Chen, P. Y., Image restoration using total variation with overlapping group sparsity, Inf. Sci., 295, 232-246 (2015) · Zbl 1360.94042
[40] Luisier, F.; Blu, T.; Unser, M., A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding, IEEE Trans. Image Process., 16, 3, 593-606 (2007)
[41] Lysaker, M.; Lundervold, A.; Tai, X.-C., Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12, 12, 1579-1590 (2003) · Zbl 1286.94020
[42] Lysaker, M.; Tai, X.-C., Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput. Vis., 66, 1, 5-18 (2006) · Zbl 1286.94021
[43] Ma, T.-H.; Huang, T.-Z.; Zhao, X.-L.; Lou, Y.-F., Image deblurring with an inaccurate blur kernel using a group-based low-rank image prior, Inf. Sci., 408, 213-233 (2017)
[44] Mei, J.-J.; Dong, Y.-Q.; Huang, T.-Z.; Yin, W.-T., Cauchy noise removal by nonconvex admm with convergence guarantees, J. Sci. Comput., 74, 2, 743-766 (2018) · Zbl 06858871
[45] Nikolova, M., A variational approach to remove outliers and impulse noise, IEEE Trans. Image Process., 20, 1, 99-120 (2004) · Zbl 1366.94065
[46] J.P. Nolan, Stable Distributions-Models for Heavy Tailed Data, Birkhäuser Boston, Cambridge http://fs2.american.edu/jpnolan/www/stable/stable.html; J.P. Nolan, Stable Distributions-Models for Heavy Tailed Data, Birkhäuser Boston, Cambridge http://fs2.american.edu/jpnolan/www/stable/stable.html
[47] Oliveira, J.; Bioucas-Dias, J.; Figueiredo, M., Adaptive total variation image deblurring: a majorization minimization approach, Signal Process., 89, 9, 1683-1693 (2009) · Zbl 1178.94029
[48] Pander, T., New polynomial approach to myriad filter computation, Signal Process., 90, 6, 1991-2001 (2010) · Zbl 1197.94105
[49] Peng, Y.; Chen, J.; Xu, X.; Pu, F., SAR images statistical modeling and classification based on the mixture of \(α\)-stable distributions, Remote Sens., 5, 5, 2145-2163 (2013)
[50] Portilla, J.; Strela, V.; Wainwright, M. J.; Simoncelli, E. P., Image denoising using scale mixtures of Gaussians in the wavelet domain, IEEE Trans. Image Process., 12, 11, 1338-1351 (2003) · Zbl 1279.94028
[51] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Phys. D Nonlinear Phenom., 60, 1-4, 259-268 (1992) · Zbl 0780.49028
[52] Sciacchitano, F.; Dong, Y.-Q.; Zeng, T.-Y., Variational approach for restoring blurred images with Cauchy noise, SIAM J. Imag. Sci., 8, 3, 1894-1922 (2015) · Zbl 1343.94014
[53] Selesnick, I. W.; Chen, P. Y., Total variation denoising with overlapping group sparsity, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 5696-5700 (2013)
[54] Steidl, G., A note on the dual treatment of higher-order regularization functionals, Computing, 76, 1, 135-148 (2006) · Zbl 1087.65067
[55] Tappen, M. F.; Russell, B. C.; Freeman, W. T., Exploiting the sparse derivative prior for super-resolution and image demosaicing, Proceedings of the IEEE Workshop on Statistical and Computational Theories of Vision (2003)
[56] Wan, T.; Canagarajah, N.; Achim, A., Segmentation of noisy colour images using Cauchy distribution in the complex wavelet domain, IET Image Process., 5, 2, 159-170 (2011)
[57] Wang, S.; Guo, W.-H.; Huang, T.-Z.; Raskutti, G., Image inpainting using reproducing kernel Hilbert space and Heaviside functions, J. Comput. Appl. Math., 311, 551-564 (2017) · Zbl 1382.94026
[58] Wang, S.; Huang, T.-Z.; Zhao, X.-L.; Mei, J.-J.; Huang, J., Speckle noise removal in ultrasound images by first- and second-order total variation, Numer. Algorithms, 78, 2, 513-533 (2018) · Zbl 1391.94105
[59] Wang, Y.-L.; Yang, J.-F.; Yin, W.-T.; Zhang, Y., A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1, 3, 248-272 (2008) · Zbl 1187.68665
[60] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 4, 600-612 (2004)
[61] Wu, C.-L.; Tai, X.-C., Augmented lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3, 3, 300-339 (2010) · Zbl 1206.90245
[62] Zhang, K.; Zuo, W.-M.; Chen, Y.-J.; Meng, D.-Y.; Zhang, L., Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process., 26, 3142-3155 (2017) · Zbl 1409.94754
[63] Zhao, X.-L.; Wang, F.; Ng, M. K., A new convex optimization model for multiplicative noise and blur removal, SIAM J. Imaging Sci., 7, 1, 456-475 (2014) · Zbl 1296.65093
[64] Zhao, X.-L.; Wang, W.; Zeng, T.-Y.; Huang, T.-Z.; Ng, M. K., Total variation structured total least squares method for image restoration, SIAM J. Sci. Comput., 35, 6, B1304-B1320 (2013) · Zbl 1287.65014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.