×

Disconnected Julia set of Halley’s method for exponential maps. (English) Zbl 1501.37044

Authors’ abstract: We investigate the Halley method of exponential maps. Our main result is that, unlike Newton’s method, the Julia set of Halley’s method may be disconnected when applied to entire maps of form \(F(z)=p(z)e^{q(z)}\) where \(p(z)\) and \(q(z)\) are polynomials and \(q(z)\) is non-constant. We also describe the nature of the fixed points and classify rational Halley’s maps of entire functions.

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
30D20 Entire functions of one complex variable (general theory)
Full Text: DOI

References:

[1] Amat, S.; Busquier, S.; Plaza, S., Review of some iterative root-finding methods from a dynamical point of view, Sci. Ser. A Math. Sci. (N.S.), 10, 3-35 (2004) · Zbl 1137.37316
[2] Barański, K.; Fagella, N.; Jarque, X.; Karpińska, B., On the connectivity of the Julia sets of meromorphic functions, Invent. Math., 198, 3, 591-636 (2014) · Zbl 1316.30027
[3] Barnard, R. W.; Dwyer, J.; Williams, E.; Williams, G. B., Conjugacies of the Newton maps of rational functions, Complex Var. Elliptic Equ., 64, 10, 1666-1685 (2019) · Zbl 1497.37051
[4] Bergweiler, W., Iteration of meromorphic functions, Bull. Amer. Math. Soc., 29, 151-188 (1993) · Zbl 0791.30018
[5] Buff, X.; Henriksen, Ch., On König’s root-finding algorithms, Nonlinearity, 16, 989-1015 (2003) · Zbl 1030.37030
[6] Campos, B.; Canela, J.; Vindel, P., Connectivity of the Julia set for the Chebyshev-Halley family on degree n polynomials, Commun. Nonlinear Sci. Numer. Simul., 82 (2020) · Zbl 1453.37039
[7] Çilingir, F., Finiteness of the area of basins of attraction of relaxed Newton’s method for certain holomorphic functions, Int. J. Bifurcation Chaos, 14, 12, 4177-4190 (2004) · Zbl 1072.37035
[8] Çilingir, F., On infinite area for complex exponential function, Chaos Solito. Fract., 22, 1189-1198 (2004) · Zbl 1063.30026
[9] Çilingir, F.; Jarque, X., On Newton’s method applied to real polynomials, J. Differ. Equ. Appl., 18, 6, 1067-1076 (2012) · Zbl 1243.65048
[10] Crane, E., Mean value conjectures for rational maps, Complex Var. Elliptic Equ., 51, 1, 41-50 (2006) · Zbl 1089.30007
[11] Corless, R. M.; Gonnet, G. H.; Hare, D. E.G.; Jeffrey, D. J.; Knuth, D. E., On the Lambert W function, Adv. Comput. Math., 5, 4, 329-359 (1996) · Zbl 0863.65008
[12] Fasi, M.; Higham, N. J.; Iannazzo, B., An algorithm for the matrix Lambert W function, SIAM J. Matrix Anal. Appl., 36, 2, 669-685 (2015) · Zbl 1317.65116
[13] Haeseler, F. V.; Peitgen, H.-O. (1988)
[14] Haruta, M., Newton’s method on the complex exponential function, Trans. Amer. Math. Soc., 351, 2499-2513 (1999) · Zbl 0922.58068
[15] Honorato, G., On the Julia set of König’s root-finding algorithms, Proc. Amer. Math. Soc., 141, 10, 3601-3607 (2013) · Zbl 1283.37046
[16] Honorato, G., Dynamics and limiting behavior of Julia sets of König’s method for multiple roots, Topology Appl., 233, 16-32 (2018) · Zbl 1378.65101
[17] Hubbard, J. H.; Schleicher, D.; Sutherland, S., How to find all roots of complex polynomials by Newton’s method, Invent. Math., 146, 1, 1-33 (2001) · Zbl 1048.37046
[18] Liu, G., Superattracting cycles of the relaxed Newton’s method for entire functions, Appl. Math. Comput., 218, 24, 12008-12012 (2012) · Zbl 1278.65079
[19] Mamayusupov, K., A characterization of postcritically minimal Newton maps of complex exponential functions, Ergodic Theory Dynam. Syst., 39, 10, 2855-2880 (2019) · Zbl 1425.37031
[20] Meier, H., On the connectedness of the Julia-set for rational functions, Preprint no. 4, RWTH Aachen, 1989.
[21] Milnor, J., Dynamics in One Complex Variable: Introductory Lectures (2006), Princeton University Press: Princeton University Press, New Jersey · Zbl 1085.30002
[22] Rückert, J.; Schleicher, D., On Newton’s method for entire functions, J. Lond. Math. Soc. (2), 75, 3, 659-676 (2007) · Zbl 1217.30024
[23] Rudin, W., Real and Complex Analysis (1966), McGraw-Hill: McGraw-Hill, New York · Zbl 0148.02904
[24] Salehov, G. S., On the convergence of the process of tangent hyperbolas, Dokl. Akad. Nauk SSSR (N.S.),, 82, 525-528 (1952) · Zbl 0046.13002
[25] Scavo, T.; Thoo, J., On the geometry of Halley’s method, Am. Math. Mon., 102, 417-426 (1995) · Zbl 0830.01005
[26] Shishikura, M., The connectivity of the Julia set and fixed points, in Complex dynamics. Families and friends. Edited by Dierk Schleicher, A K Peters, Wellesley, 2009, pp. 257-276. · Zbl 1180.37074
[27] Sugiura, H.; Hasegawa, T., On the global convergence of Schröder’s iteration formula for real zeros of entire functions, J. Comput. Appl. Math., 358, 136-145 (2019) · Zbl 1415.65112
[28] Tan, L., Branched coverings and cubic Newton maps, Fund. Math., 154, 207-260 (1997) · Zbl 0903.58029
[29] Varona, J. L., Graphic and numerical comparison between iterative methods, Math. Intelligencer, 24, 1, 37-46 (2002) · Zbl 1003.65046
[30] Wang, X.; Li, Y.; Sun, Y.; Song, J.; Ge, F., Julia sets of Newton’s method for a class of complex-exponential function \(####\), Nonlinear Dyn., 62, 4, 955-966 (2010) · Zbl 1215.37034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.