×

A weaker notion of the finite factorization property. (English) Zbl 07858239

The paper explores the concept of the length-finite factorization property in the context of positive monoids and positive semirings. The authors aim to provide a deeper understanding of the non-unique factorization phenomenon in these structures. They identify a large class of positive monoids that satisfy the length-finite factorization property and compare it with the bounded and finite factorization properties. The paper also discusses the preservation of these properties under certain constructions and poses open questions for further research.
The paper defines atomic monoids and discusses their importance in factorization theory. An atomic monoid is one where every non-invertible element can be written as a sum of irreducible elements (atoms).
Length-finite factorization property states that each element in a monoid has only finitely many factorizations of any given length. The authors introduce this property as a complement to the bounded and finite factorization properties.
The paper focuses on positive monoids (additive submonoids of nonnegative real numbers) and positive semirings (positive monoids closed under multiplication). These structures have been actively studied for their atomic properties and factorizations.
The authors compare the length-finite factorization property with the bounded and finite factorization properties, highlighting their relationships and differences.
The paper provides examples of positive monoids and semirings that satisfy or do not satisfy the length-finite factorization property. It also discusses methods to construct positive semirings from positive monoids and examines the preservation of factorization properties under these constructions.
The authors prove that:
1)
The sum of finitely many co-well-ordered sequences is a co-well-ordered sequence;
2)
If \(M\) be an atomic co-well-ordered positive monoid, then for all \(x \in M\) and \(l \in \mathbb{N}\), every irredundant subset of \(\mathrm{Z}_{l}(x)=\{z \in \mathrm{Z}(x)=\{z \in \mathrm{Z}(M)~|~\pi(z) = x + {\mathcal{U}} (M)\} ~|~ |z| = l\}\) is finite; where \(\mathrm{Z}(M)\) is the free commutative monoid on \({\mathcal{A}}(M/{\mathcal{U}}(M))\), \({\mathcal{U}}(M)\) denote the group of invertible elements of \(M\) and the set \(M/{\mathcal{U}}(M) = \{b + {\mathcal{U}}(M) ~|~ b \in M\}\) is a monoid under the natural operation induced by the operation of \(M\); \({\mathcal{A}}(M)\) denote the set of all the atoms of \(M\) and function \(\pi : \mathrm{Z}(M) \rightarrow M/{\mathcal{U}}(M)\) be the only monoid homomorphism such that \(\pi(a) = a\) for all \(a \in {\mathcal{A}}(M/{\mathcal{U}}(M))\);
3)
Every atomic co-well-ordered positive monoid is an length-finite factorization monoid (\(LFFM\)).
In addition, the authors pose two open questions:
1)
For a positive monoid M consisting of algebraic numbers, is \(E(M)=\left<e^m~|~m\in M\right>\) an length-finite factorization semiring (\(LFFS\)) provided that \(M\) is an \(LFFM\)?
2)
For which \(q \in \mathbb{Q}_{>0}\) is the positive semiring \(\mathbb{N}_{0}[q]\) an \(LFFS\)?
he paper makes a significant contribution to the field of factorization theory by introducing and exploring the length-finite factorization property. This property provides a new perspective on the non-unique factorization phenomenon in positive monoids and semirings. The comparison with other well-studied properties, such as the bounded and finite factorization properties, helps to contextualize the importance of the length-finite factorization property. The examples and constructions provided in the paper offer valuable insights and open up new avenues for further research.
Overall, the paper is well-structured and provides a thorough analysis of the length-finite factorization property, making it a valuable resource for researchers in the field of algebra and factorization theory.

MSC:

20M13 Arithmetic theory of semigroups
06F05 Ordered semigroups and monoids
20M14 Commutative semigroups

References:

[1] K. Ajran, J. Bringas, B. Li, E. Singer, and M. Tirador, Factorization in additive monoids of evaluation polynomial semirings, Comm. Algebra 51 (2023), no. 10, 4347-4362. https://doi.org/10.1080/00927872.2023.2208672 · Zbl 07719915 · doi:10.1080/00927872.2023.2208672
[2] D. D. Anderson, D. F. Anderson, and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), no. 1, 1-19. https://doi.org/10.1016/0022-4049(90) 90074-R · Zbl 0727.13007 · doi:10.1016/0022-4049(90)90074-R
[3] D. F. Anderson and F. Gotti, Bounded and finite factorization domains, in Rings, Monoids and Module Theory, 7-57, Springer Proc. Math. Stat., 382, Springer, Singapore. https://doi.org/10.1007/978-981-16-8422-7_2 · Zbl 1498.13003 · doi:10.1007/978-981-16-8422-7_2
[4] N. R. Baeth, S. T. Chapman, and F. Gotti, Bi-atomic classes of positive semirings, Semi-group Forum 103 (2021), no. 1, 1-23. https://doi.org/10.1007/s00233-021-10189-8 · Zbl 1482.20030 · doi:10.1007/s00233-021-10189-8
[5] N. R. Baeth and F. Gotti, Factorizations in upper triangular matrices over information semialgebras, J. Algebra 562 (2020), 466-496. https://doi.org/10.1016/j.jalgebra. 2020.06.031 · Zbl 1464.16044 · doi:10.1016/j.jalgebra.2020.06.031
[6] A. Baker, Transcendental Number Theory, second edition, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 1990. · Zbl 0715.11032
[7] M. Bras-Amorós, Increasingly enumerable submonoids of R: music theory as a unifying theme, Amer. Math. Monthly 127 (2020), no. 1, 33-44. https://doi.org/10.1080/ 00029890.2020.1674073 · Zbl 1427.00030 · doi:10.1080/00029890.2020.1674073
[8] M. Bras-Amorós and M. Gotti, Atomicity and density of Puiseux monoids, Comm. Al-gebra 49 (2021), no. 4, 1560-1570. https://doi.org/10.1080/00927872.2020.1840574 · Zbl 1479.20043 · doi:10.1080/00927872.2020.1840574
[9] A. Bu, J. Vulakh, and A. Zhao, Length-factoriality and pure irreducibility, Commun. Al-gebra 51 (2023), no. 9, 3745-3755. https://doi.org/10.1080/00927872.2023.2187629 · Zbl 1522.13032 · doi:10.1080/00927872.2023.2187629
[10] S. T. Chapman and J. Coykendall, Half-factorial domains, a survey, in Non-Noetherian Commutative Ring Theory, 97-115, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, Springer, Boston 2020. https://doi.org/10.1007/978-1-4757-3180-4_5 · Zbl 0987.13010 · doi:10.1007/978-1-4757-3180-4_5
[11] S. T. Chapman, J. Coykendall, F. Gotti, and W. W. Smith, Length-factoriality in commutative monoids and integral domains, J. Algebra 578 (2021), 186-212. https: //doi.org/10.1016/j.jalgebra.2021.03.010 · Zbl 1462.13020 · doi:10.1016/j.jalgebra.2021.03.010
[12] S. T. Chapman and M. Gotti, Atomicity of positive monoids, submitted.
[13] S. T. Chapman, F. Gotti, and M. Gotti, Factorization invariants of Puiseux monoids generated by geometric sequences, Comm. Algebra 48 (2020), no. 1, 380-396. https: //doi.org/10.1080/00927872.2019.1646269 · Zbl 1442.20036 · doi:10.1080/00927872.2019.1646269
[14] P. M. Cohn, Bezout rings and their subrings, Math. Proc. Cambridge Philos. Soc. 64 (1968), no. 2, 251-264. https://doi.org/10.1017/s0305004100042791 · Zbl 0157.08401 · doi:10.1017/s0305004100042791
[15] J. Correa-Morris and F. Gotti, On the additive structure of algebraic valuations of polynomial semirings, J. Pure Appl. Algebra 226 (2022), no. 11, Paper No. 107104, 20 pp. https://doi.org/10.1016/j.jpaa.2022.107104 · Zbl 1514.20211 · doi:10.1016/j.jpaa.2022.107104
[16] J. Coykendall, D. E. Dobbs, and B. Mullins, On integral domains with no atoms, Comm. Algebra 27 (1999), no. 12, 5813-5831. https://doi.org/10.1080/00927879908826792 · Zbl 0990.13015 · doi:10.1080/00927879908826792
[17] J. Coykendall and W. W. Smith, On unique factorization domains, J. Algebra 332 (2011), no. 1, 62-70. https://doi.org/10.1016/j.jalgebra.2010.10.024 · Zbl 1235.13014 · doi:10.1016/j.jalgebra.2010.10.024
[18] W. Gao, C. Liu, S. Tringali, and Q. Zhong, On half-factoriality of transfer Krull monoids, Comm. Algebra 49 (2021), no. 1, 409-420. https://doi.org/10.1080/ 00927872.2020.1800720 · Zbl 1457.13043 · doi:10.1080/00927872.2020.1800720
[19] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations, Pure and Applied Mathematics, 278, Chapman & Hall/CRC, Boca Raton, FL, 2006. https://doi.org/ 10.1201/9781420003208 · Zbl 1113.11002 · doi:10.1201/9781420003208
[20] A. Geroldinger and Q. Zhong, A characterization of length-factorial Krull monoids, New York J. Math. 27 (2021), 1347-1374. · Zbl 1484.13044
[21] J. S. Golan, Semirings and their Applications, Kluwer Acad. Publ., Dordrecht, 1999. https://doi.org/10.1007/978-94-015-9333-5 · Zbl 0947.16034 · doi:10.1007/978-94-015-9333-5
[22] F. Gotti, Increasing positive monoids of ordered fields are FF-monoids, J. Algebra 518 (2019), 40-56. https://doi.org/10.1016/j.jalgebra.2018.10.010 · Zbl 1467.20071 · doi:10.1016/j.jalgebra.2018.10.010
[23] F. Gotti, On semigroup algebras with rational exponents, Comm. Algebra 50 (2022), no. 1, 3-18. https://doi.org/10.1080/00927872.2021.1949018 · Zbl 1484.13045 · doi:10.1080/00927872.2021.1949018
[24] F. Gotti and M. Gotti, Atomicity and boundedness of monotone Puiseux monoids, Semi-group Forum 96 (2018), no. 3, 536-552. https://doi.org/10.1007/s00233-017-9899-9 · Zbl 1418.20015 · doi:10.1007/s00233-017-9899-9
[25] F. Gotti and M. Gotti, On the molecules of numerical semigroups, Puiseux monoids, and Puiseux algebras, in Numerical Semigroups, 141-161, Springer INdAM Ser., 40, Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-40822-0_10 · Zbl 1465.13002 · doi:10.1007/978-3-030-40822-0_10
[26] F. Gotti and B. Li, Atomic semigroup rings and the ascending chain condition on principal ideals, Proc. Amer. Math. Soc. 151 (2023), no. 6, 2291-2302. https://doi. org/10.1090/proc/16295 · Zbl 1512.13002 · doi:10.1090/proc/16295
[27] F. Gotti and H. Polo, On the arithmetic of polynomial semidomains, Forum Math. 35 (2023), no. 5, 1179-1197. https://doi.org/10.1515/forum-2022-0091 · Zbl 1532.13024 · doi:10.1515/forum-2022-0091
[28] F. Gotti and H. Polo, On the subatomicity of polynomial semidomains, in Algebraic, Number Theoretic, and Topological Aspects of Ring Theory, 197-212, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-28847-0_13 · Zbl 1530.16048 · doi:10.1007/978-3-031-28847-0_13
[29] F. Gotti and J. Vulakh, On the atomic structure of torsion-free monoids, Semigroup Forum 107 (2023), no. 2, 402-423. https://doi.org/10.1007/s00233-023-10385-8 · Zbl 1535.20295 · doi:10.1007/s00233-023-10385-8
[30] A. Grams, Atomic rings and the ascending chain condition for principal ideals, Proc. Cambridge Philos. Soc. 75 (1974) 321-329. · Zbl 0287.13002
[31] F. Halter-Koch, Finiteness theorems for factorizations, Semigroup Forum 44 (1992), no. 1, 112-117. https://doi.org/10.1007/BF02574329 · Zbl 0751.20046 · doi:10.1007/BF02574329
[32] N. Jiang, B. Li, and S. Zhu, On the primality and elasticity of algebraic valuations of cyclic free semirings, Internat. J. Algebra Comput. 33 (2023), no. 2, 197-210. https: //doi.org/10.1142/S021819672350011X · Zbl 1520.20113 · doi:10.1142/S021819672350011X
[33] H. Polo, A characterization of finite factorization positive monoids, Commun. Korean Math. Soc. 37 (2022), no. 3, 669-679. https://doi.org/10.4134/CKMS.c210270 · Zbl 1509.20092 · doi:10.4134/CKMS.c210270
[34] A. Zaks, Half factorial domains, Bull. Amer. Math. Soc. 82 (1976), no. 5, 721-723. https://doi.org/10.1090/S0002-9904-1976-14130-4 · Zbl 0338.13020 · doi:10.1090/S0002-9904-1976-14130-4
[35] S. Zhu, Factorizations in evaluation monoids of Laurent semirings, Comm. Algebra 50 (2022), no. 6, 2719-2730. https://doi.org/10.1080/00927872.2021.2018449 · Zbl 1512.20205 · doi:10.1080/00927872.2021.2018449
[36] Henry Jiang Detroit Country Day School Beverly Hills, MI 48025, U.S.A Email address: jiangstem@gmail.com Shihan Kanungo Henry M. Gunn School Palo Alto, CA 94306, U.S.A Email address: shihankanungo@gmail.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.