×

Numerical solution of an inverse random source problem for the time fractional diffusion equation via PhaseLift. (English) Zbl 1475.35432

In this paper, the following initial boundary value problem for the one-dimensional stochastic time fractional diffusion equation is considered: \begin{align*} & \partial_t^\alpha u(x,t)- \partial_{xx} u(x,t) = F(t)\dot{W}_x, \quad (x,t) \in (0,1)\times \mathbb{R}_+, \\ & u(x,0) = 0, \quad x \in [0,1], \\ & \partial_x u(0,t) = 0, \quad u(1,t) = 0, \quad t \in \mathbb{R}_+, \end{align*} where \( \partial_t^\alpha \) denotes the Caputo fractional derivative of order \( 0 < \alpha < 1 \) with respect to the variable \( t \), and \( F \) is a deterministic function satisfying \( F(0) = 0 \). In addition, \( W_x \) is the spatial Brownian motion satisfying \( \mathbb{E}[W_xW_y] = \min\{x, y\} \) for \( x,y \in (0,1) \), and \( \dot{W}_x \) denotes the formal derivative of \( W_x \) known as the white noise. The authors deduce the Green’s function for the following equivalent problem in frequency domain: \begin{align*} & \partial_{xx} U(x,\omega) -(\text{i}\omega)^\alpha U(x,\omega) = -\hat{F}(\omega)\dot{W}_x, \quad x \in (0,1), \ \omega \in \mathbb{R}, \\ & \partial_x U(0,\omega) = 0, \quad U(1,\omega) = 0, \quad \omega \in \mathbb{R}, \end{align*} where \( \hat{F} \) denotes the Fourier transform of the zero extention of \( F \) in \( (-\infty, 0) \). This provides the necessary tools for showing well-posedness of the direct problem. Subsequently, the inverse problem is considered which is to reconstruct the diffusion coefficient \( F \) of the random source from the measured data \( u(0,t) \) for \( t > 0 \). It is shown that the modulus \( \vert \hat{F}(\omega) \vert \) is uniquely and unstable determined by the data \( \mathbb{V}[U(0,\omega)] \). The phase retrieval for the inverse problem is also discussed. The paper concludes with some numerical illustrations that make use of a finite difference method to discretize the problem, and in addition a regularized convex optimization scheme is used as a stabilizer.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
26A33 Fractional derivatives and integrals
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35R11 Fractional partial differential equations
35R30 Inverse problems for PDEs
35R25 Ill-posed problems for PDEs
49M37 Numerical methods based on nonlinear programming
60G60 Random fields
60H40 White noise theory
60J65 Brownian motion
65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65T50 Numerical methods for discrete and fast Fourier transforms
90C25 Convex programming
35K20 Initial-boundary value problems for second-order parabolic equations

Software:

TFOCS; PhaseLift

References:

[1] Adams E E and Gelhar L W 1992 Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis Water Resour. Res.28 3293-307 · doi:10.1029/92wr01757
[2] Aleroev T, Kirane M and Malik S 2013 Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition Electronic J. Differ. Equ.270 1-16 · Zbl 1288.80012
[3] Auslender A and Teboulle M 2006 Interior gradient and proximal methods for convex and conic optimization SIAM J. Optim.16 697-725 · Zbl 1113.90118 · doi:10.1137/s1052623403427823
[4] Aziz S and Malik S 2016 Identification of an unknown source term for a time fractional fourth-order parabolic equation Electronic J. Differ. Equ.293 1-20 · Zbl 1358.80004
[5] Bao G, Chen C and Li P 2016 Inverse random source scattering problems in several dimensions SIAM/ASA J. Uncertainty Quantification4 1263-87 · Zbl 1355.78025 · doi:10.1137/16m1067470
[6] Harrach B and Lin Y-H 2020 Monotonicity-based inversion of the fractional Schödinger equation II. General potentials and stability SIAM J. Math. Anal.52 402-36 · Zbl 1429.35210 · doi:10.1137/19m1251576
[7] Becker S R, Candès E J and Grant M C 2011 Templates for convex cone problems with applications to sparse signal recovery Math. Prog. Comp.3 165-218 · Zbl 1257.90042 · doi:10.1007/s12532-011-0029-5
[8] Candès E J, Eldar Y C, Strohmer T and Voroninski V 2015 Phase retrieval via matrix completion SIAM Rev.57 225-51 · Zbl 1344.49057 · doi:10.1137/151005099
[9] Candès E J and Recht B 2009 Exact matrix completion via convex optimization Found. Comput. Math.9 717-72 · Zbl 1219.90124 · doi:10.1007/s10208-009-9045-5
[10] Candès E J and Tao T 2010 The power of convex relaxation: near-optimal matrix completion IEEE Trans. Inform. Theory56 2053-80 · Zbl 1366.15021 · doi:10.1109/tit.2010.2044061
[11] Cao X and Liu H 2019 Determining a fractional Helmholtz equation with unknown source and scattering potential Commun. Math. Sci.17 1861-76 · Zbl 1433.35015 · doi:10.4310/cms.2019.v17.n7.a5
[12] Cekić M, Lin Y and Rüland A 2020 The Calderón problem for the fractional Schrödinger equation with drift Calc. Var. Partial Differ. Equ.59 91 · Zbl 1439.35563 · doi:10.1007/s00526-020-01740-6
[13] Chen C, Miao J, Wang C and Lee T 2007 Application of optimization technique to noncrystalline x-ray diffraction microscopy: guided hybrid input-output method Phys. Rev. B 76 064113 · doi:10.1103/physrevb.76.064113
[14] Devaney A J 1979 The inverse problem for random sources J. Math. Phys.20 1687-91 · doi:10.1063/1.524277
[15] Faridian A, Hopp D, Pedrini G, Eigenthaler U, Hirscher M and Osten W 2010 Nanoscale imaging using deep ultraviolet digital holographic microscopy Opt. Express18 14159-64 · doi:10.1364/oe.18.014159
[16] Feng X, Li P and Wang X 2020 An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion Inverse Problems36 045008 · Zbl 1469.35251 · doi:10.1088/1361-6420/ab6503
[17] Fienup J R 1978 Reconstruction of an object from the modulus of its Fourier transform Opt. Lett.3 27-9 · doi:10.1364/ol.3.000027
[18] Fukushima M and Mine H 1981 A generalized proximal point algorithm for certain non-convex minimization problems Int. J. Syst. Sci.12 989-1000 · Zbl 0467.65028 · doi:10.1080/00207728108963798
[19] Gerchberg R 1972 A practical algorithm for the determination of phase from image and diffraction plane pictures Optik35 237-46
[20] Giona M, Cerbelli S and Roman H E 1992 Fractional diffusion equation and relaxation in complex viscoelastic materials Phys. A 191 449-53 · doi:10.1016/0378-4371(92)90566-9
[21] Hatano Y and Hatano N 1998 Dispersive transport of ions in column experiments: an explanation of long-tailed profiles Water Resour. Res.34 1027-33 · doi:10.1029/98wr00214
[22] Ismailov M I and Çiçek M 2016 Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions Appl. Math. Model.40 4891-9 · Zbl 1459.35395 · doi:10.1016/j.apm.2015.12.020
[23] Jaganathan K, Eldar Y and Hassibi B 2017 Phase retrieval: an overview of recent developments Optical Compressive imaging(Series in Optics and Optoelectronics) (Boca Raton: CRC Press) pp 263-96
[24] Jaganathan K, Oymak S and Hassibi B 2017 Sparse phase retrieval: uniqueness guarantees and recovery algorithms IEEE Trans. Signal Process.65 2402-10 · Zbl 1414.94273 · doi:10.1109/tsp.2017.2656844
[25] Johnson I, Jefimovs K, Bunk O, David C, Dierolf M, Gray J, Renker D and Pfeiffer F 2008 Coherent diffractive imaging using phase front modifications Phys. Rev. Lett.100 155503 · doi:10.1103/physrevlett.100.155503
[26] Li M, Chen C and Li P 2017 Inverse random source scattering for the Helmholtz equation in inhomogeneous media Inverse Problems34 015003 · Zbl 1474.35695 · doi:10.1088/1361-6420/aa99d2
[27] Liu C, Wen J, Wen J and Zhang Z 2020 Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation Inverse Probl. Imag.14 1001-24 · Zbl 1464.35399 · doi:10.3934/ipi.2020053
[28] Loewen E and Popov E 1997 Diffraction Gratings and Applications (New York: Marcel Dekker)
[29] Mesbahi M and Papavassilopoulos G P 1997 On the rank minimization problem over a positive semidefinite linear matrix inequality IEEE Trans. Automat. Contr.42 239-43 · Zbl 0872.93029 · doi:10.1109/9.554402
[30] Metzler R and Klafter J 2000 The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep.339 1-77 · Zbl 0984.82032 · doi:10.1016/s0370-1573(00)00070-3
[31] Murio D and Mejía C 2008 Source terms identification for time fractional diffusion equation Rev. Colombiana Mat.42 25-46 · Zbl 1189.65199
[32] Nesterov Y 2004 Introductory Lectures on Convex Optimization A Basic Course(Applied Optimization vol 87) (Boston: Kluwer Academic Publishers) · Zbl 1086.90045 · doi:10.1007/978-1-4419-8853-9
[33] Niu P, Helin T and Zhang Z 2020 An inverse random source problem in a stochastic fractional diffusion equation Inverse Problems36 045002 · Zbl 1469.35259 · doi:10.1088/1361-6420/ab532c
[34] Patterson A L 1944 Ambiguities in the x-ray analysis of crystal structures Phys. Rev.65 195-201 · doi:10.1103/physrev.65.195
[35] Podlubny I 1999 Fractional Differential Equations(Mathematics in Science and Engineering vol 198) (San Diego, CA: Academic) · Zbl 0924.34008
[36] Trebino R 2002 Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Boston: Kluwer Academic Publishers)
[37] Tseng P 2008 On accelerated proximal gradient methods for convex-concave optimization preprint available at //mit.edu/ dimitrib/PTseng/papers/apgm.pdf
[38] Wei T, Sun L and Li Y 2016 Uniqueness for an inverse space-dependent source term in a multi-dimensional time-fractional diffusion equation Appl. Math. Lett.61 108-13 · Zbl 1386.35481 · doi:10.1016/j.aml.2016.05.004
[39] Zhang Y and Xu X 2011 Inverse source problem for a fractional diffusion equation Inverse Problems27 035010 · Zbl 1211.35280 · doi:10.1088/0266-5611/27/3/035010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.