×

Efficient estimation of smoothing spline with exact shape constraints. (English) Zbl 07660254

Summary: Smoothing spline is a popular method in non-parametric function estimation. For the analysis of data from real applications, specific shapes on the estimated function are often required to ensure the estimated function undeviating from the domain knowledge. In this work, we focus on constructing the exact shape constrained smoothing spline with efficient estimation. The ‘exact’ here is referred as to impose the shape constraint on an infinite set such as an interval in one-dimensional case. Thus the estimation becomes a so-called semi-infinite optimisation problem with an infinite number of constraints. The proposed method is able to establish a sufficient and necessary condition for transforming the exact shape constraints to a finite number of constraints, leading to efficient estimation of the shape constrained functions. The performance of the proposed methods is evaluated by both simulation and real case studies.

MSC:

62-XX Statistics

Software:

UCI-ml; KernSmooth
Full Text: DOI

References:

[1] Brezger, A., & Steiner, W. J.(2003). Monotonic regression based on Bayesian P-splines: An application to estimating price response functions from store-level scanner data. Tech. rep., Discussion paper//Sonderforschungsbereich 386 der Ludwig-Maximilians-Universität München.
[2] Curry, H. B.; Schoenberg, I. J., On Pólya frequency functions IV: The fundamental spline functions and their limits, Journal D’analyse Mathématique, 17, 71-107 (1966) · Zbl 0146.08404 · doi:10.1007/BF02788653
[3] Dai, X., & Chien, P.(2017). Minimax optimal rates of estimation in functional anova models with derivatives. arXiv:1706.00850.
[4] Delecroix, M.; Thomas-Agnan, C., Spline and Kernel regression under shape restrictions, Smoothing and Regression: Approaches, Computation, and Application, 109-133 (2000) · Zbl 0986.62025
[5] Dierckx, I. P., Algorithm/algorithmus 42 an algorithm for cubic spline fitting with convexity constraints, Computing, 24, 349-371 (1980) · Zbl 0419.65006 · doi:10.1007/BF02237820
[6] Ducharme, G. R.; Fontez, B., A smooth test of goodness-of-fit for growth curves and monotonic nonlinear regression models, Biometrics, 60, 977-986 (2004) · Zbl 1274.62764 · doi:10.1111/j.0006-341X.2004.00253.x
[7] Fan, J.; Gijbels, I., Local polynomial modelling and its applications: Monographs on statistics and applied probability (1996), New York: CRC Press, New York · Zbl 0873.62037
[8] Green, P. J., Penalized likelihood for general semi-parametric regression models, International Statistical Review / Revue Internationale de Statistique, 55, 3, 245 (1987) · Zbl 0636.62068
[9] Green, P. J.; Silverman, B. W., Nonparametric regression and generalized linear models: A roughness penalty approach (1993), New York: CRC Press, New York
[10] Hastie, T.; Tibshirani, R.; Friedman, J., The elements of statistical learning, 1 (2001), Berlin · Zbl 0973.62007
[11] He, X.; Shi, P., Monotone B-spline smoothing, Journal of the American Statistical Association, 93, 643-650 (1998) · Zbl 1127.62322
[12] Kelly, C.; Rice, J., Monotone smoothing with application to dose-response curves and the assessment of synergism, Biometrics, 46, 4, 1071-1085 (1990) · doi:10.2307/2532449
[13] Liao, X.; Meyer, M. C., Change-point estimation using shape-restricted regression splines, Journal of Statistical Planning and Inference, 188, 8-21 (2017) · Zbl 1391.62065 · doi:10.1016/j.jspi.2017.03.007
[14] Lichman, M.(2013), UCI machine learning repository.
[15] Mammen, E.; Thomas-Agnan, C., Smoothing splines and shape restrictions, Scandinavian Journal of Statistics, 26, 239-252 (1999) · doi:10.1111/1467-9469.00147
[16] Matzkin, R. L., Semiparametric estimation of monotone and concave utility functions for polychotomous choice models, Econometrica: Journal of the Econometric Society, 59, 1315-1327 (1991) · Zbl 0781.90009 · doi:10.2307/2938369
[17] Meyer, M. C., Inference using shape-restricted regression splines, The Annals of Applied Statistics, 2, 1013-1033 (2008) · Zbl 1149.62033 · doi:10.1214/08-AOAS167
[18] Meyer, M. C., Constrained penalized splines, Canadian Journal of Statistics, 40, 190-206 (2012) · Zbl 1236.62033 · doi:10.1002/cjs.10137
[19] Meyer, M. C., Constrained partial linear regression splines, Statistica Sinica, 28, 277-292 (2018) · Zbl 1382.62016
[20] Nagahara, M.; Martin, C. F., Monotone smoothing splines using general linear systems, Asian Journal of Control, 15, 461-468 (2013) · Zbl 1327.93187 · doi:10.1002/asjc.557
[21] Ramsay, J. O., Monotone regression splines in action, Statistical Science, 3, 425-441 (1988) · doi:10.1214/ss/1177012761
[22] Shor, N. Z.; Zhurbenko, N., The minimization method using space dilatation in direction of difference of two sequential gradients, Kibernetika, 3, 51-59 (1971) · Zbl 0272.90071
[23] Turlach, B. A., Shape constrained smoothing using smoothing splines, Computational Statistics, 20, 81-104 (2005) · Zbl 1088.62055 · doi:10.1007/BF02736124
[24] Utreras, F. I., Smoothing noisy data under monotonicity constraints existence, characterization and convergence rates, Numerische Mathematik, 47, 611-625 (1985) · Zbl 0606.65006 · doi:10.1007/BF01389460
[25] Villalobos, M.; Wahba, G., Inequality-constrained multivariate smoothing splines with application to the estimation of posterior probabilities, Journal of the American Statistical Association, 82, 239-248 (1987) · Zbl 0614.62047 · doi:10.1080/01621459.1987.10478426
[26] Wahba, G., Spline models for observational data (1990), Philadelphia, Pennsylvania: Siam, Philadelphia, Pennsylvania · Zbl 0813.62001
[27] Wand, M., & Jones, M.. (1995), Kernel smoothing. Vol. 60 of Monographs on statistics and applied probability. · Zbl 0854.62043
[28] Wand, M. P.; Ormerod, J. T., On Semiparametric regression with O’sullivan penalized splines, Australian & New Zealand Journal of Statistics, 50, 2, 179-198 (2008) · Zbl 1146.62030 · doi:10.1111/j.1467-842X.2008.00507.x
[29] Wang, X.; Li, F., Isotonic smoothing spline regression, Journal of Computational and Graphical Statistics, 17, 21-37 (2008) · doi:10.1198/106186008X285627
[30] Zeng, L.; Deng, X.; Yang, J., Constrained hierarchical modeling of degradation data in tissue-engineered scaffold fabrication, IIE Transactions, 48, 16-33 (2016) · doi:10.1080/0740817X.2015.1019164
[31] Zhang, D.; Lin, X.; Raz, J.; Sowers, M., Semiparametric stochastic mixed models for longitudinal data, Journal of the American Statistical Association, 93, 442, 710 (1998) · Zbl 0918.62039 · doi:10.1080/01621459.1998.10473723
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.