×

On the uniqueness of solutions in inverse problems for Burgers’ equation under a transverse diffusion. (English) Zbl 1520.80002

Summary: We consider the inverse problems of restoring initial data and a source term depending on spatial variables and time in boundary value problems for the two-dimensional Burgers equation under a transverse diffusion in a rectangular and on a half-strip, like the Hopf-Cole transformation is applied to reduce Burgers’ equation to the heat equation with respect to the function that can be measured to obtain tomographic data. We prove the uniqueness of solutions in inverse problems with such additional data based on the Fourier representations and the Laplace transformation.

MSC:

80A23 Inverse problems in thermodynamics and heat transfer
44A10 Laplace transform
34B24 Sturm-Liouville theory
34L10 Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators
45D05 Volterra integral equations
35Q79 PDEs in connection with classical thermodynamics and heat transfer
35Q53 KdV equations (Korteweg-de Vries equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35R30 Inverse problems for PDEs
Full Text: DOI

References:

[1] H. Aref and P. K. Daripa, Note on finite difference approximations to Burgers’ equation, SIAM J. Sci. Statist. Comput. 5 (1984), no. 4, 856-864. · Zbl 0567.65085
[2] A. V. Baev, Uniqueness of the solution of inverse initial value problems for the Burgers equation with an unknown source, Differ. Equ. 57 (2021), no. 6, 701-710. · Zbl 1469.35245
[3] J. Baker, A. Armaou and P. D. Christofides, Nonlinear control of incompressible fluid flow: application to Burgers’ equation and 2D channel flow, J. Math. Anal. Appl. 252 (2000), no. 1, 230-255. · Zbl 1011.76018
[4] H. Bateman, Some recent researches on the motion of fluids, Monthly Weather Rev. 43 (1915), 163-170.
[5] J. Bec, R. Iturriaga and K. Khanin, Topological shocks in Burgers turbulence, Phys. Rev. Lett. 89 (2002), Article ID 024501.
[6] J. Bec and K. Khanin, Forced Burgers equation in an unbounded domain, J. Stat. Phys. 113 (2003), 741-759. · Zbl 1137.76386
[7] J. Bec and K. Khanin, Burgers turbulence, Phys. Rep. 447 (2007), no. 1-2, 1-66.
[8] E. R. Benton and G. W. Platzman, A table of solutions of the one-dimensional Burgers equation, Quart. Appl. Math. 30 (1972), 195-212. · Zbl 0255.76059
[9] I. A. Bogaevsky, Matter evolution in Burgulence, preprint (2004), https://arxiv.org/abs/math-ph/0407073.
[10] M. Bonkile, A. Awasthi, C. Lakshmi, V. Mukundan and V. S. Aswin, A systematic literature review of Burgers equation with recent advances, Pramana J. Phys. 90 (2018), 10.1007/s12043-018-1559-4. · doi:10.1007/s12043-018-1559-4
[11] J. M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect. 1 17 (1939), no. 2, 1-53. · JFM 65.0988.03
[12] J. M. Burgers, A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics, Academic Press, New York (1948), 171-199.
[13] D. Chaikovskii and Y. Zhang, Convergence analysis for forward and inverse problems in singularly perturbed time-dependent reaction-advection-diffusion equations, J. Comput. Phys. 470 (2022), Paper No. 111609. · Zbl 07599633
[14] A. Chekhlov and V. Yakhot, Kolmogorov turbulence in a random-force-driven Burgers equation, Phys. Rev. E (3) 51 (1995), no. 5, R2739-R2742.
[15] A. Chekhlov and V. Yakhot, Kolmogorov turbulence in a random-force-driven Burgers equation: Anomalous scaling and probability density functions, Phys. Rev. E (3) 52 (1995), no. 5, 5681-5684.
[16] J. D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9 (1951), 225-236. · Zbl 0043.09902
[17] A. M. Denisov, Elements of the Theory of Inverse Problems, VSP, Utrecht, 1999. · Zbl 0940.35003
[18] A. M. Denisov, Problems of determining the unknown source in parabolic and hyperbolic equations, Comput. Math. Math. Phys. 55 (2015), no. 5, 829-833. · Zbl 1515.35341
[19] A. M. Denisov, Uniqueness and nonuniqueness of the solution to the problem of determining the source in the heat equation, Comput. Math. Math. Phys. 56 (2016), no. 10, 1737-1742. · Zbl 1362.35330
[20] A. M. Denisov, Approximate solution of inverse problems for the heat equation with a singular perturbation, Comput. Math. Math. Phys. 61 (2021), no. 12, 2004-2014. · Zbl 1481.35398
[21] C. A. J. Fletcher, Generating exact solutions of the two-dimensional Burgers’ equations, Internat. J. Numer. Methods Fluids 3 (1983), 213-216. · Zbl 0563.76082
[22] R. J. Gelinas, S. K. Doss and K. Miller, The moving finite element method: Applications to general partial differential equations with multiple large gradients, J. Comput. Phys. 40 (1981), no. 1, 202-249. · Zbl 0482.65061
[23] V. Gurarie and A. Migdal, Instantons in the Burgers equation, Phys. Rev. E 54 (1996), 10.1103/PhysRevE.54.4908. · doi:10.1103/PhysRevE.54.4908
[24] S. N. Gurbatov, A. I. Saichev and S. F. Shandarin, A model description of the development of the large-scale structure of the Universe, Sov. Phys. Dokl. 20 (1984), 921-923.
[25] R. S. Hirsh, Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. Comput. Phys. 19 (1975), no. 1, 90-109. · Zbl 0326.76024
[26] E. Hopf, The partial differential equation u_t+uu_x=\mu u_{xx}, Comm. Pure Appl. Math. 3 (1950), 201-230. · Zbl 0039.10403
[27] P. Jain and D. Holla, Numerical solution of coupled Burgers’ equations, Int. J. Nonlin. Mech. 13 (1978), 213-222. · Zbl 0388.76049
[28] G. Kreiss and H.-O. Kreiss, Convergence to steady state of solutions of Burgers’ equation, Appl. Numer. Math. 2 (1986), no. 3-5, 161-179. · Zbl 0631.65121
[29] A. Kudryavtsev and O. Sapozhnikov, Determination of the exact solutions to the inhomogeneous Burgers equation with the use of the Darboux transformation, Acoust. Phys. 57 (2011), 311-319.
[30] S. Leibovich and A. R. Seebas, Nonlinear Waves, Cornell University, Ithaca, 1974.
[31] B. M. Levitan, Inverse Sturm-Liouville Problems, VNU Science, Utrecht, 1987. · Zbl 0749.34001
[32] W. Liao, An implicit fourth-order compact finite difference scheme for one-dimensional Burgers’ equation, Appl. Math. Comput. 206 (2008), no. 2, 755-764. · Zbl 1157.65438
[33] W. Liao, A fourth-order finite-difference method for solving the system of two-dimensional Burgers’ equations, Internat. J. Numer. Methods Fluids 64 (2010), no. 5, 565-590. · Zbl 1377.65108
[34] D. V. Lukyanenko, A. A. Borzunov and M. A. Shishlenin, Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front, Commun. Nonlinear Sci. Numer. Simul. 99 (2021), Paper No. 105824. · Zbl 1471.65123
[35] D. V. Lukyanenko, V. B. Grigorev, V. T. Volkov and M. A. Shishlenin, Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction-diffusion equation with the location of moving front data, Comput. Math. Appl. 77 (2019), no. 5, 1245-1254. · Zbl 1442.65233
[36] D. V. Lukyanenko, I. V. Prigorniy and M. A. Shishlenin, Some features of solving an inverse backward problem for a generalized Burgers’ equation, J. Inverse Ill-Posed Probl. 28 (2020), no. 5, 641-649. · Zbl 1461.35237
[37] J. D. Murray, On Burgers’ model equations for turbulence, J. Fluid Mech. 59 (1973), 263-279. · Zbl 0267.76035
[38] D. E. Panayotounakos and D. Drikakis, On the closed-form solutions of the wave, diffusion and Burgers equations in fluid mechanics, Z. Angew. Math. Mech. 75 (1995), no. 6, 437-447. · Zbl 0832.35116
[39] L. G. Reyna and M. J. Ward, On the exponentially slow motion of a viscous shock, Comm. Pure Appl. Math. 48 (1995), no. 2, 79-120. · Zbl 0824.76042
[40] E. Y. Rodin, On some approximate and exact solutions of boundary value problems for Burgers’ equation, J. Math. Anal. Appl. 30 (1970), 401-414. · Zbl 0172.14201
[41] R. Sinuvasan, K. M. Tamizhmani and P. G. L. Leach, Algebraic resolution of the Burgers equation with a forcing term, Pramana J. Phys. 88 (2017), 10.1007/s12043-017-1382-3. · Zbl 1411.35239 · doi:10.1007/s12043-017-1382-3
[42] E. Varoḡlu and W. D. L. Finn, Space-time finite elements incorporating characteristics for the Burgers equation, Internat. J. Numer. Methods Engrg. 16 (1980), 171-184. · Zbl 0449.76076
[43] G. B. Whitham, Linear and Nonlinear Waves, Pure Appl. Math., John Wiley & Sons, New York, 1974. · Zbl 0373.76001
[44] D. V. Widder, The Laplace Transform, Princeton Math. Ser. 6, Princeton University, Princeton, 1941. · JFM 67.0384.01
[45] G. M. Zaslavsky, Chaos in Dynamic Systems, Harwood Academic, Chur, 1985.
[46] T. Zhanlav, O. Chuluunbaatar and V. Ulziibayar, Higher-order accurate numerical solution of unsteady Burgers’ equation, Appl. Math. Comput. 250 (2015), 701-707. · Zbl 1328.65186
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.