×

Sixth-order quasi-compact difference scheme for the time-dependent diffusion equation. (English) Zbl 07843796

Summary: This paper focuses on developing a numerical method with high-order accuracy for solving the time-dependent diffusion equation. We discrete time first, which results in a modified Helmholtz equation at each time level. Then, the quasi-compact difference method, which is derivative-free, is used to discretize the resulting Helmholtz equation. Theoretically, the stability and convergence analyses are performed by the aid of the Fourier method and error estimation, respectively. Numerically, Richardson extrapolation algorithm is utilized to improve the time accuracy, while the fast sine transformation is employed to reduce the complexity for solving the discretized linear system. Numerical examples are given to validate the accuracy and effectiveness of the proposed discretization method.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Saied, EA, The non-classical solution of the inhomogeneous non-linear diffusion equation, Appl. Math. Comput., 98, 103-108, 1999 · Zbl 0929.35065
[2] Qu, C., Exact solutions to nonlinear diffusion equations obtained by a generalized conditional symmetry method, IMA J. Appl. Math., 62, 283-302, 1999 · Zbl 0936.35039 · doi:10.1093/imamat/62.3.283
[3] Dresner, L., Similarity Solutions of Nonlinear Partial Differential Equations, 1983, New York: Pitman, New York · Zbl 0526.35002
[4] Saied, EA; Hussein, MM, New classes of similarity solutions of the inhomogeneous nonlinear diffusion equations, J. Phys. A Math. Gen., 27, 4867-4874, 1994 · Zbl 0842.35002 · doi:10.1088/0305-4470/27/14/015
[5] Peaceman, DW; Rachford, HH, The numerical solution of parabolic and elliptic differential equations, Soc. Ind. Appl. Math., 3, 28-41, 1995 · Zbl 0067.35801 · doi:10.1137/0103003
[6] Dehghan, M.; Mohebbi, A., High order compact boundary value method for the solution of unsteady convection-diffusion problems, Math. Comput. Simul., 79, 683-699, 2008 · Zbl 1155.65075 · doi:10.1016/j.matcom.2008.04.015
[7] Liao, WY, A compact high-order finite difference method for unsteady convection-diffusion equation, Int. J. Comput. Methods Eng. Sci. Mech., 13, 135-145, 2012 · Zbl 07871315 · doi:10.1080/15502287.2012.660227
[8] Kalita, JC; Dalal, DC; Dass, AK, A class of higher order compact schemes for the unsteady two-dimensional convection-diffusion equation with variable convection coefficients, Int. J. Numer. Methods Fluids, 38, 1111-1131, 2002 · Zbl 1094.76546 · doi:10.1002/fld.263
[9] Karaa, S., An accurate LOD scheme for two-dimensional parabolic problems, Appl. Math. Comput., 170, 886-894, 2005 · Zbl 1103.65094
[10] Kong, L.; Zhu, P.; Wang, Y.; Zeng, Z., Efficient and accurate numerical methods for the multidimensional convection-diffusion equations, Math. Comput. Simul., 162, 179-194, 2019 · Zbl 1540.65304 · doi:10.1016/j.matcom.2019.01.014
[11] Spotz, WF; Carey, GF, Extension of high-order compact schemes to time-dependent problems, Numer. Methods Partial Differ. Equ., 17, 657-672, 2001 · Zbl 0998.65101 · doi:10.1002/num.1032
[12] Karaa, S.; Zhang, J., High order ADI method for solving unsteady convection-diffusion problems, J. Comput. Phys., 198, 1-9, 2004 · Zbl 1053.65067 · doi:10.1016/j.jcp.2004.01.002
[13] Tian, ZF; Ge, YB, A fourth-order compact ADI method for solving two-dimensional unsteady convection-diffusion problems, J. Comput. Appl. Math., 198, 268-286, 2007 · Zbl 1104.65086 · doi:10.1016/j.cam.2005.12.005
[14] You, D., A high-order padà ADI method or unsteady convection-diffusion equations, J. Comput. Phys., 214, 1-11, 2006 · Zbl 1089.65092 · doi:10.1016/j.jcp.2005.10.001
[15] Tian, ZF, A rational high-order compact ADI method for unsteady convection-diffusion equations, Comput. Phys. Commun., 182, 649-662, 2011 · Zbl 1219.65092 · doi:10.1016/j.cpc.2010.11.013
[16] Sun, HW; Li, L., A CCD-ADI method for unsteady convection diffusion equations, Comput. Phys. Commun., 185, 3, 790-797, 2013 · Zbl 1360.35193 · doi:10.1016/j.cpc.2013.11.009
[17] Liao, HL; Sun, ZZ, Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Methods Partial Differ. Equ., 26, 1, 37-60, 2010 · Zbl 1196.65154 · doi:10.1002/num.20414
[18] Dai, R.; Zhang, J.; Wang, Y., Higher order ADI method with completed Richardson extrapolation for solving unsteady convection-diffusion Equations, Comput. Math. Appl., 71, 431-442, 2016 · Zbl 1443.65119 · doi:10.1016/j.camwa.2015.12.007
[19] Li, J.; Chen, Y.; Liu, G., High-order compact ADI methods for parabolic equations, Comput. Math. Appl., 52, 1343-1356, 2006 · Zbl 1121.65092 · doi:10.1016/j.camwa.2006.11.010
[20] Li, T.; Shu, CW; Zhang, M., Stability analysis of inverse Lax-Wendroff boundary treatment of high order central difference schemes for diffusion equations, J. Sci. Comput., 70, 576-607, 2017 · Zbl 1361.65062 · doi:10.1007/s10915-016-0258-x
[21] Li, T.; Lu, J.; Shu, CW, Stability analysis of inverse Lax-Wendroff boundary treatment of high order compact difference schemes for parabolic equations, J. Comput. Appl. Math., 400, 113711, 2013 · Zbl 1481.65145 · doi:10.1016/j.cam.2021.113711
[22] Li, T.; Shu, CW; Zhang, M., Stability analysis of the inverse Lax-Wendroff boundary treatment for high order upwind-biased finite difference schemes, J. Comput. Appl. Math., 299, 140-158, 2016 · Zbl 1333.65101 · doi:10.1016/j.cam.2015.11.038
[23] Itzá Balam, R.; Uh Zapata, M., A new eighth-order implicit finite difference method to solve the three-dimensional Helmholtz equation, Comput. Math. Appl., 80, 1176-1200, 2020 · Zbl 1447.65113 · doi:10.1016/j.camwa.2020.06.011
[24] Turkel, E.; Gordon, D.; Gordon, R.; Tsynkov, S., Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number, J. Comput. Phys., 232, 272-287, 2013 · Zbl 1291.65273 · doi:10.1016/j.jcp.2012.08.016
[25] Wu, T.; Xu, R., An optimal compact sixth-order finite difference scheme for the Helmholtz equation, Comput. Math. Appl., 75, 2520-2537, 2018 · Zbl 1409.78008 · doi:10.1016/j.camwa.2017.12.023
[26] Wang, Z.; Ge, Y.; Sun, HW; Sun, T., Sixth-order quasi-compact difference schemes for multi-dimensional Helmholtz equations, Appl. Math. Comput., 431, 127347, 2022 · Zbl 1510.65284
[27] Sun, T.; Wang, Z.; Sun, HW; Zhang, C., A sixth-order quasi-compact difference scheme for multidimensional Poisson equations without derivatives of source term, J. Sci. Comput., 93, 45, 2022 · Zbl 1503.65277 · doi:10.1007/s10915-022-02003-6
[28] Singer, I.; Turkel, E., High-order finite difference methods for the Helmholtz equation, Comput. Methods Appl. Mech. Eng., 163, 343-358, 1998 · Zbl 0940.65112 · doi:10.1016/S0045-7825(98)00023-1
[29] Horn, R.; Johnson, C., Topicsin Matrix Analysis, 1991, Cambridge: Cambridge University Press, Cambridge · Zbl 0729.15001 · doi:10.1017/CBO9780511840371
[30] Horn, RA; Johnson, CR, Topics in Matrix Analysis, 1991, Cambridge: Cambridge University, Cambridge · Zbl 0729.15001 · doi:10.1017/CBO9780511840371
[31] Zhou, H.; Wu, YJ; Tian, W., Extrapolation algorithm of compact ADI approximation for two-dimensional parabolic equation, Appl. Math. Comput., 219, 2875-2884, 2012 · Zbl 1309.65102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.