×

A semi-Lagrangian Bernstein-Bézier finite element method for two-dimensional coupled Burgers’ equations at high Reynolds numbers. (English) Zbl 1540.76084

Summary: This paper aims to develop a semi-Lagrangian Bernstein-Bézier high-order finite element method for solving the two-dimensional nonlinear coupled Burgers’ equations at high Reynolds numbers. The proposed method combines the semi-Lagrangian scheme for the time integration and the high-order Bernstein-Bézier functions for the space discretization in the finite element framework. Unstructured triangular Bernstein-Bézier patches are reconstructed in a simple and inherent manner over finite elements along the characteristic curves defined by the material derivative. A fourth-order Runge-Kutta scheme is used for the approximation of departure points along with a local \(\mathrm{L}^2\)-projection to compute the solution at the semi-Lagrangian stage. By using these techniques, the nonlinear problem is decoupled and two linear diffusion problems are solved separately for each velocity component. An implicit time-steeping scheme is used and a preconditioned conjugate gradient solver is used for the resulting linear systems of algebraic equations. The proposed method is investigated through several numerical examples including convergence studies. It is found that the proposed method is stable, highly accurate and efficient in solving two-dimensional coupled Burgers’ equations at high Reynolds numbers.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Mirzaei, P. A., CFD modeling of micro and urban climates: Problems to be solved in the new decade, Sustain. Cities Soc., 69, Article 102839 pp. (2021)
[2] Anderson, J. D., Fundamentals of Aerodynamics (2010), Tata McGraw-Hill Education
[3] Vassberg, J., Expectations for computational fluid dynamics, Int. J. Comput. Fluid Dyn., 19, 8, 549-558 (2005) · Zbl 1184.76813
[4] Vos, J.; Rizzi, A.; Darracq, D.; Hirschel, E., Navier-Stokes solvers in European aircraft design, Prog. Aerosp. Sci., 38, 8, 601-697 (2002)
[5] Pope, G. A., The application of fractional flow theory to enhanced oil recovery, Soc. Pet. Eng. J., 20, 03, 191-205 (1980)
[6] Liñán, A.; Williams, F. A., Fundamental Aspects of Combustion (1993), Oxford University Press: Oxford University Press New York, NY (United States)
[7] Brooks, A.; Hughes, T., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32, 1-3, 199-259 (1982) · Zbl 0497.76041
[8] Bertrand, F.; Demkowicz, L.; Gopalakrishnan, J.; Heuer, N., Recent advances in least-squares and discontinuous Petrov-Galerkin finite element methods, Comput. Methods Appl. Math., 19, 3, 395-397 (2019) · Zbl 1420.65116
[9] Hughes, T. J.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Eng., 73, 2, 173-189 (1989) · Zbl 0697.76100
[10] Donea, J., A taylor-Galerkin method for convective transport problems, Int. J. Numer. Methods Eng., 20, 1, 101-119 (1984) · Zbl 0524.65071
[11] Carew, E.; Townsend, P.; Webster, M., A taylor-Petrov-Galerkin algorithm for viscoelastic flow, J. Non-Newton. Fluid Mech., 50, 2-3, 253-287 (1993) · Zbl 0804.76065
[12] BaShan, A., A numerical treatment of the coupled viscous Burgers’ equation in the presence of very large Reynolds number, Phys. A Stat. Mech. Appl., 545, Article 123755 pp. (2020)
[13] Jafarabadi, A.; Shivanian, E., Numerical simulation of nonlinear coupled Burgers’ equation through meshless radial point interpolation method, Eng. Anal. Bound. Elem., 95, 187-199 (2018) · Zbl 1403.76141
[14] Kaur, J.; Gupta, R. K.; Kumar, S., On explicit exact solutions and conservation laws for time fractional variable - coefficient coupled Burgers’ equations, Commun. Nonlinear Sci. Numer. Simul., 83, Article 105108 pp. (2020) · Zbl 1451.35253
[15] Khalique, C. M.; Abdallah, S. A., Coupled Burgers equations governing polydispersive sedimentation; a Lie symmetry approach, Results Phys., 16, Article 102967 pp. (2020)
[16] Zhang, Y.; Lin, J.; Reutskiy, S.; Sun, H.; Feng, W., The improved backward substitution method for the simulation of time-dependent nonlinear coupled Burgers’ equations, Results Phys., 18, Article 103231 pp. (2020)
[17] El-Amrani, M.; Seaid, M., Numerical simulation of natural and mixed convection flows by Galerkin-characteristics method, Int. J. Num. Meth. Fluids., 53, 1819-1845 (2007) · Zbl 1370.76084
[18] El-Amrani, M.; Seaid, M., Convergence and stability of finite element modified method of characteristics for the incompressible Navier-Stokes equations, J. Numer. Math., 15, 101-135 (2007) · Zbl 1120.76038
[19] El-Amrani, M.; Seaid, M., A finite element semi-Lagrangian method with \(L^2\) interpolation, Int. J. Numer. Methods Eng., 90, 1485-1507 (2012) · Zbl 1246.76052
[20] El-Amrani, M.; Seaid, M., An essentially non-oscillatory semi-Lagrangian method for tidal flow simulations, Int. J. Numer. Methods Eng., 81, 805-834 (2010) · Zbl 1183.76804
[21] El-Amrani, M.; Seaid, M., Eulerian-Lagrangian time-stepping methods for convection-dominated problems, Int. J. Comput. Math., 85, 3-4, 421-439 (2008) · Zbl 1138.65083
[22] Temperton, C.; Staniforth, A., An efficient two-time-level Galerkin-characteristics semi-implicit integration scheme, Quart. J. Roy. Meteor. Soc., 113, 1025-1039 (1987)
[23] Seaid, M., Semi-Lagrangian integration schemes for viscous incompressible flows, Comput. Methods Appl. Math., 4, 392-409 (2002) · Zbl 1098.76529
[24] El-Amrani, M.; Seaid, M., An \(L^2\)-projection for the Galerkin-characteristic solution of incompressible flows, SIAM J. Sci. Comput., 33, 6, 3110-3131 (2011) · Zbl 1232.65143
[25] Giraldo, F. X., The Lagrange-Galerkin spectral element method on unstructured quadrilateral grids, J. Comput. Phys., 147, 114-146 (1998) · Zbl 0920.65070
[26] Karniadakis, G. E.; Sherwin, S. J., Spectral/Hp Element Methods for Computational Fluid Dynamics, Numerical Mathematics and Scientific Computation (2005), Oxford University Press · Zbl 1116.76002
[27] Babuška, I.; Suri, M., The p and hp versions of the finite element method, basic principles and properties, SIAM Rev., 36, 578-632 (1994) · Zbl 0813.65118
[28] Schwab, C.; Suri, M., The p and hp versions of the finite element method for problems with boundary layers, Math. Comput., 65, 1403-1429 (1996) · Zbl 0853.65115
[29] Melenk, J., (Hp-Finite Element Methods for for Singular Perturbations. Hp-Finite Element Methods for for Singular Perturbations, Lecture Notes in Mathematics, Vol. 1796 (2002), Springer-Verlag) · Zbl 1021.65055
[30] Babuška, I.; Griebel, M.; Pitkaränta, J., The problem of selecting the shape functions for p-type elements, Int. J. Numer. Methods Eng., 28, 1891-1908 (1986) · Zbl 0705.73246
[31] Šolín, P.; Segeth, K.; Doležel, I., Higher-Order Finite Element Methods (2003), Chapman & Hall
[32] Petersen, S.; Dreyer, D.; Estorff, V., Assessment of finite and spectral element shape functions for efficient iterative simulations of interior acoustics, Comput. Methods Appl. Mech. Engrg., 195, 6463-6478 (2006) · Zbl 1119.76043
[33] El Kacimi, A.; Laghrouche, O.; Shadi, M.; Trevelyan, J., Bernstein-bézier based finite elements for efficient solution of short wave problems, Comput. Methods Appl. Mech. Eng., 343, 166-185 (2019) · Zbl 1440.74391
[34] Ainsworth, M.; Davydov, O., Bernstein-bézier finite elements of arbitrary order and optimal assembly procedures, SIAM J. Sci. Comput., 33, 3087-3109 (2011) · Zbl 1237.65120
[35] Kirby, R. C.; Thinh, K. T., Fast simplicial quadrature-based finite element operators using Bernstein polynomials, Numer. Math., 121, 261-279 (2012) · Zbl 1247.65147
[36] Ainsworth, M.; Jiang, S.; Sanchéz, M., An \(\mathcal{O} ( p^3 )\) hp-version FEM in two dimensions: Preconditioning and post-processing, Comput. Methods Appl. Mech. Engrg., 350, 766-802 (2019) · Zbl 1441.65089
[37] Hundsdorfer, W., Partially implicit BDF2 blends for convection dominated flows, SIAM J. Numer. Anal., 38, 6, 1763-1783 (2001) · Zbl 1007.76052
[38] Löhner, R.; Ambrosiano, J., A vectorized particle tracer for unstructured grids, J. Comput. Phys., 91, 1, 22-31 (1990) · Zbl 0718.65076
[39] Goodman, T., Variation diminishing properties of Bernstein polynomials on triangles, J. Approx. Theory, 50, 111-126 (1987) · Zbl 0618.41007
[40] Floater, M.; Pena, J., Monotonicity preservation on triangles, Math. Comput., 69, 1505-1519 (2000) · Zbl 0954.41004
[41] Lai, M. J.; Schumaker, L. L., Spline Functions on Triangulations, Encyclopedia Math. Appl. Vol. 110 (2007), Cambridge University Press · Zbl 1185.41001
[42] Bermejo, R.; Saavedra, L., Lagrange-Galerkin methods for the incompressible Navier-Stokes equations: A review, Commun. Appl. Ind. Math., 7, 3, 26-55 (2016) · Zbl 1398.76095
[43] Wenyuan, L., A fourth-order finite-difference method for solving the system of two-dimensional Burgers’ equations, Int. J. Numer. Methods Fluids, 64, 5, 565-590 (2010) · Zbl 1377.65108
[44] Ngondiep, E., An efficient three-level explicit time-split scheme for solving two-dimensional unsteady nonlinear coupled Burgers’ equations, Int. J. Numer. Methods Fluids, 92, 4, 266-284 (2020)
[45] Zhang, Y.; Lin, J.; Reutskiy, S.; Sun, H.; Feng, W., The improved backward substitution method for the simulation of time-dependent nonlinear coupled Burgers’ equations, Results Phys. (2020)
[46] Kannan, R.; Wang, Z., A high order spectral volume solution to the Burgers’ equation using the Hopf-Cole transformation, Int. J. Numer. Methods Fluids, 69, 4, 781-801 (2012) · Zbl 1253.76087
[47] Shi, F.; Zheng, H.; Cao, Y.; Li, J.; Zhao, R., A fast numerical method for solving coupled Burgers’ equations, Numer. Methods Partial Differ. Equ., 33, 6, 1823-1838 (2017) · Zbl 1383.65127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.