×

LDG approximation of a nonlinear fractional convection-diffusion equation using B-spline basis functions. (English) Zbl 1518.65110

Summary: This paper develops new numerical schemes for solution to nonlinear fractional convection-diffusion equations of order \(\beta\in[1,2]\). We propose the local discontinuous Galerkin methods by adopting linear, quadratic, and cubic B-spline basis functions and prove stability and optimal order of convergence \(O(h^{k+1})\) for the fractional diffusion problem. This method transforms the equation into a system of first-order equations and approximates the solution of the equation by selecting the appropriate basis functions. The B-Spline functions significantly improve the accuracy and stability of the method. The performed numerical results demonstrate the efficiency and accuracy of the proposed scheme in different conditions and confirm the optimal order of convergence.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65D07 Numerical computation using splines
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations

Software:

SplinePak
Full Text: DOI

References:

[1] Alibaud, N., Entropy formulation for fractal conservation laws, J. Evol. Equ., 7, 1, 145-175 (2007) · Zbl 1116.35013
[2] Alibaud, N.; Droniou, J.; Vovelle, J., Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ., 4, 03, 479-499 (2007) · Zbl 1144.35038
[3] Amirian, M. M.; Towers, I.; Jovanoski, Z.; Irwin, A. J., Memory and mutualism in species sustainability: a time-fractional Lotka-Volterra model with harvesting, Heliyon, 6, 9, Article e04816 pp. (2020)
[4] Bouharguane, A.; Seloula, N., The local discontinuous Galerkin method for convection-diffusion-fractional anti-diffusion equations, Appl. Numer. Math., 148, 61-78 (2020) · Zbl 1447.65070
[5] Cifani, S.; Jakobsen, E. R.; Karlsen, K. H., The discontinuous Galerkin method for fractal conservation laws, IMA J. Numer. Anal., 31, 3, 1090-1122 (2011) · Zbl 1256.65089
[6] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1998) · Zbl 0927.65118
[7] Cont, R.; Tankov, P., Financial Modelling with Jump Processes (2004), Chapman and Hall/CRC, Aug. · Zbl 1052.91043
[8] Deng, W.; Hesthaven, J. S., Local discontinuous Galerkin methods for fractional diffusion equations, ESAIM: Math. Model. Numer. Anal., 47, 6, 1845-1864 (2013) · Zbl 1282.35400
[9] Doungmo Goufo, E. F.; Kumar, S.; Mugisha, S., Similarities in a fifth-order evolution equation with and with no singular kernel, Chaos Solitons Fractals, 130, Article 109467 pp. (2020) · Zbl 1489.35297
[10] Droniou, J., A numerical method for fractal conservation laws, Math. Comput., 79, 269, 95-124 (2010) · Zbl 1201.65163
[11] Dumitru, B.; Kai, D.; Enrico, S., Fractional Calculus: Models and Numerical Methods, vol. 3 (2012), World Scientific · Zbl 1248.26011
[12] Egger, H.; Schöberl, J., A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems, IMA J. Numer. Anal., 30, 4, 1206-1234 (2010) · Zbl 1204.65133
[13] Espedal, M. S.; Karlsen, K. H., Numerical solution of reservoir flow models based on large time step operator splitting algorithms, (Filtration in Porous Media and Industrial Application (2000), Springer), 9-77 · Zbl 1077.76546
[14] Fowler, A. C., Evolution equations for dunes and drumlins, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 96, 3, 377-387 (2002) · Zbl 1229.86014
[15] Ghanbari, B.; Kumar, S.; Kumar, R., A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Solitons Fractals, 133, Article 109619 pp. (2020) · Zbl 1483.92060
[16] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (2007), Springer Science & Business Media
[17] Höllig, K.; Hörner, J., Approximation and Modeling with B-Splines (2013), SIAM · Zbl 1285.65005
[18] Höllig, K.; Hörner, J., Programming finite element methods with weighted B-splines, High-Order Finite Element and Isogeometric Methods. High-Order Finite Element and Isogeometric Methods, Comput. Math. Appl., 70, 7, 1441-1456 (2015) · Zbl 1443.65334
[19] Khalighi, M.; Amirianmatlob, M.; Malek, A., A new approach to solving multiorder time-fractional advection-diffusion-reaction equations using bem and Chebyshev matrix, Math. Methods Appl. Sci., 44, 4, 2964-2984 (2021) · Zbl 1473.65332
[20] Khalighi, M.; Eftekhari, L.; Hosseinpour, S.; Lahti, L., Three-species Lotka-Volterra model with respect to Caputo and Caputo-Fabrizio fractional operators, Symmetry, 13, 3 (2021)
[21] Kumar, S., A new analytical modelling for fractional telegraph equation via Laplace transform, Appl. Math. Model., 38, 13, 3154-3163 (2014) · Zbl 1427.35327
[22] Kumar, S.; Ahmadian, A.; Kumar, R.; Kumar, D.; Singh, J.; Baleanu, D.; Salimi, M., An efficient numerical method for fractional sir epidemic model of infectious disease by using Bernstein wavelets, Mathematics, 8, 4, 558 (2020)
[23] Kumar, S.; Chauhan, R.; Momani, S.; Hadid, S., Numerical investigations on COVID-19 model through singular and non-singular fractional operators, Numer. Methods Partial Differ. Equ. (2020)
[24] Kumar, S.; Ghosh, S.; Samet, B.; Goufo, E. F.D., An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator, Math. Methods Appl. Sci., 43, 9, 6062-6080 (2020) · Zbl 1452.35242
[25] Kumar, S.; Kumar, R.; Agarwal, R. P.; Samet, B., A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods, Math. Methods Appl. Sci., 43, 8, 5564-5578 (2020) · Zbl 1452.65124
[26] Kumar, S.; Kumar, R.; Cattani, C.; Samet, B., Chaotic behaviour of fractional predator-prey dynamical system, Chaos Solitons Fractals, 135, Article 109811 pp. (2020) · Zbl 1489.92119
[27] Kumar, S.; Kumar, R.; Momani, S.; Hadid, S., A study on fractional COVID-19 disease model by using Hermite wavelets, Math. Methods Appl. Sci. (2021)
[28] Liao, W., A compact high-order finite difference method for unsteady convection-diffusion equation, Int. J. Comput. Methods Eng. Sci. Mech., 13, 3, 135-145 (2012) · Zbl 07871315
[29] Matalon, M., Intrinsic flame instabilities in premixed and nonpremixed combustion, Annu. Rev. Fluid Mech., 39, 163-191 (2007) · Zbl 1296.76057
[30] Matlob, M. A.; Jamali, Y., The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: a primer, Crit. Rev.™ Biomed. Eng., 47, 4 (2019)
[31] Mitrinovic, D. S.; Vasic, P. M., Analytic Inequalities, vol. 1 (1970), Springer · Zbl 0199.38101
[32] Richard, H., Fractional Calculus: An Introduction for Physicists (2014), World Scientific · Zbl 1293.26001
[33] Saeedian, M.; Khalighi, M.; Azimi-Tafreshi, N.; Jafari, G. R.; Ausloos, M., Memory effects on epidemic evolution: the susceptible-infected-recovered epidemic model, Phys. Rev. E, 95, Article 022409 pp. (2017)
[34] Safdari, H.; Zare Kamali, M.; Shirazi, A.; Khalighi, M.; Jafari, G.; Ausloos, M., Fractional dynamics of network growth constrained by aging node interactions, PLoS ONE, 11, 05, 1-13 (2016)
[35] Safdari, H.; Rajabzadeh, M.; Khalighi, M., Solving a non-linear fractional convection-diffusion equation using local discontinuous Galerkin method, Appl. Numer. Math., 165, 22-34 (2021) · Zbl 1475.65130
[36] Schumaker, L. L., Spline Functions: Computational Methods (2015), SIAM · Zbl 1333.65018
[37] Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y., A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64, 213-231 (2018) · Zbl 1509.26005
[38] Veeresha, P.; Prakasha, D. G.; Kumar, S., A fractional model for propagation of classical optical solitons by using nonsingular derivative, Math. Methods Appl. Sci. (2020)
[39] Wold, S., Spline functions in data analysis, Technometrics, 16, 1, 1-11 (1974) · Zbl 0285.65010
[40] Xu, Q.; Hesthaven, J. S., Discontinuous Galerkin method for fractional convection-diffusion equations, SIAM J. Numer. Anal., 52, 1, 405-423 (2014) · Zbl 1297.26018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.