×

Time- or space-dependent coefficient recovery in parabolic partial differential equation for sensor array in the biological computing. (English) Zbl 1394.65094

Summary: This study presents numerical schemes for solving a parabolic partial differential equation with a time- or space-dependent coefficient subject to an extra measurement. Through the extra measurement, the inverse problem is transformed into an equivalent nonlinear equation which is much simpler to handle. By the variational iteration method, we obtain the exact solution and the unknown coefficients. The results of numerical experiments and stable experiments imply that the variational iteration method is very suitable to solve these inverse problems.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
92B05 General biology and biomathematics
Full Text: DOI

References:

[1] Dehghan, M., An inverse problem of finding a source parameter in a semilinear parabolic equation, Applied Mathematical Modelling, 25, 9, 743-754, (2001) · Zbl 0995.65098 · doi:10.1016/S0307-904X(01)00010-5
[2] Dehghan, M., Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement, Numerical Methods for Partial Differential Equations, 21, 3, 611-622, (2005) · Zbl 1069.65104 · doi:10.1002/num.20055
[3] Dehghan, M., Parameter determination in a partial differential equation from the overspecified data, Mathematical and Computer Modelling, 41, 2-3, 197-213, (2005) · Zbl 1080.35174 · doi:10.1016/j.mcm.2004.07.010
[4] Cannon, J. R.; Rundell, W., Recovering a time dependent coefficient in a parabolic differential equation, Journal of Mathematical Analysis and Applications, 160, 2, 572-582, (1991) · Zbl 0789.35162 · doi:10.1016/0022-247X(91)90327-V
[5] Prilepko, A. I.; Orlovsky, D. G.; Vasin, I. A., Methods for Solving Inverse Problems in Mathematical Physics, 1, (2000), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0947.35173
[6] Cannon, J. R., Determination of an unknown coefficient in a parabolic differential equation, Duke Mathematical Journal, 30, 313-323, (1963) · Zbl 0117.06901 · doi:10.1215/s0012-7094-63-03033-3
[7] Cannon, J. R.; Yin, H. M., Numerical solutions of some parabolic inverse problems, Numerical Methods for Partial Differential Equations, 2, 177-191, (1990) · Zbl 0709.65105
[8] Azari, H.; Allegretto, W.; Lin, Y.; Zhang, S., Numerical procedures for recovering a time dependent coefficient in a parabolic differential equation, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, 11, 1-2, 181-199, (2004) · Zbl 1055.35132
[9] Dehghan, M., Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement, Numerical Methods for Partial Differential Equations, 21, 3, 611-622, (2005) · Zbl 1069.65104 · doi:10.1002/num.20055
[10] Dehghan, M.; Tatari, M., Solution of a parabolic equation with a time-dependent coefficient and an extra measurement using the decomposition procedure of adomian, Physica Scripta, 72, 6, 425-431, (2005) · Zbl 1102.65127 · doi:10.1088/0031-8949/72/6/001
[11] Shamsi, M.; Dehghan, M., Recovering a time-dependent coefficient in a parabolic equation from overspecified boundary data using the pseudospectral legendre method, Numerical Methods for Partial Differential Equations, 23, 1, 196-210, (2007) · Zbl 1107.65085 · doi:10.1002/num.20174
[12] Liao, W.; Dehghan, M.; Mohebbi, A., Direct numerical method for an inverse problem of a parabolic partial differential equation, Journal of Computational and Applied Mathematics, 232, 2, 351-360, (2009) · Zbl 1173.65059 · doi:10.1016/j.cam.2009.06.017
[13] Lakestani, M.; Dehghan, M., The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurement, Journal of Computational and Applied Mathematics, 235, 3, 669-678, (2010) · Zbl 1200.65076 · doi:10.1016/j.cam.2010.06.020
[14] Deng, Z.-C.; Yang, L.; Yu, J.-N.; Luo, G.-W., Identifying the diffusion coefficient by optimization from the final observation, Applied Mathematics and Computation, 219, 9, 4410-4422, (2013) · Zbl 1432.35248 · doi:10.1016/j.amc.2012.10.045
[15] Parand, K.; Rad, J. A., Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement, Computer Physics Communications, 184, 3, 582-595, (2013) · doi:10.1016/j.cpc.2012.10.012
[16] Golayoglu Fatullayev, A.; Cula, S., An iterative procedure for determining an unknown spacewise-dependent coefficient in a parabolic equation, Applied Mathematics Letters, 22, 7, 1033-1037, (2009) · Zbl 1179.35154 · doi:10.1016/j.aml.2009.01.022
[17] Hettlich, F.; Rundell, W., Identification of a discontinuous source in the heat equation, Inverse Problems, 17, 5, 1465-1482, (2001) · Zbl 0986.35129 · doi:10.1088/0266-5611/17/5/315
[18] Yi, Z.; Murio, D. A., Source term identification in 1-D IHCP, Computers and Mathematics with Applications, 47, 12, 1921-1933, (2004) · Zbl 1063.65102 · doi:10.1016/j.camwa.2002.11.025
[19] Hasanov, A., Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: weak solution approach, Journal of Mathematical Analysis and Applications, 330, 2, 766-779, (2007) · Zbl 1120.35083 · doi:10.1016/j.jmaa.2006.08.018
[20] Yang, L.; Deng, Z. C.; Yu, J. N.; Luo, G. W., Two regularization strategies for an evolutional type inverse heat source problem, Journal of Physics A: Mathematical and Theoretical, 42, 16, (2009) · Zbl 1181.35341
[21] Yang, L.; Deng, Z.-C.; Yu, J.-N.; Luo, G.-W., Optimization method for the inverse problem of reconstructing the source term in a parabolic equation, Mathematics and Computers in Simulation, 80, 2, 314-326, (2009) · Zbl 1183.65118 · doi:10.1016/j.matcom.2009.06.031
[22] Peralta, J.; Olivar, L. E., Regularization algorithm within two parameters for the identification of the heat conduction coefficient in the parabolic equation, Mathematical and Computer Modelling, 57, 7-8, 1990-1998, (2013) · Zbl 1305.35155 · doi:10.1016/j.mcm.2012.02.002
[23] He, J.-H., Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer Methods in Applied Mechanics and Engineering, 167, 1-2, 57-68, (1998) · Zbl 0942.76077 · doi:10.1016/S0045-7825(98)00108-X
[24] He, J.-H., Variational iteration method—some recent results and new interpretations, Journal of Computational and Applied Mathematics, 207, 1, 3-17, (2007) · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[25] Aksoy, Y.; Pakdemirli, M.; Abbasbandy, S.; Boyaci, H., New perturbation-iteration solutions for nonlinear heat transfer equations, International Journal of Numerical Methods for Heat and Fluid Flow, 22, 7, 814-828, (2012) · doi:10.1108/09615531211255725
[26] Yildirim, A.; Koçak, H., Rational approximation solution of the foam drainage equation with time- and space-fractional derivatives, International Journal of Numerical Methods for Heat and Fluid Flow, 22, 4, 512-525, (2012) · Zbl 1356.76263 · doi:10.1108/09615531211215792
[27] Mehdi Hosseini, S. M.; Mohyud-Din, S. T.; Ghaneai, H., Variational iteration method for Hirota-Satsuma coupled KDV equation using auxiliary Parameter, International Journal of Numerical Methods for Heat and Fluid Flow, 22, 3, 277-286, (2012) · Zbl 1356.35202 · doi:10.1108/09615531211208006
[28] Ghaneai, H.; Hosseini, M. M.; Mohyud-Din, S. T., Modified variational iteration method for solving a neutral functional-differential equation with proportional delays, International Journal of Numerical Methods for Heat and Fluid Flow, 22, 8, 1086-1095, (2012) · Zbl 1356.65208 · doi:10.1108/09615531211271880
[29] Geng, F.; Lin, Y., Application of the variational iteration method to inverse heat source problems, Computers and Mathematics with Applications, 58, 11-12, 2098-2102, (2009) · Zbl 1189.65216 · doi:10.1016/j.camwa.2009.03.002
[30] Ganji, D. D.; Sadighi, A., Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations, Journal of Computational and Applied Mathematics, 207, 1, 24-34, (2007) · Zbl 1120.65108 · doi:10.1016/j.cam.2006.07.030
[31] Dehghan, M.; Tatari, M.; Azizi, A., The solution of the Falkner-Skan equation arising in the modelling of boundary-layer problems via variational iteration method, International Journal of Numerical Methods for Heat and Fluid Flow, 21, 2, 136-149, (2011) · Zbl 1231.76203 · doi:10.1108/09615531111105362
[32] Drăgănescu, G. E.; Căpălnăşăn, V., Nonlinear relaxation phenomena in polycrystalline solids, International Journal of Nonlinear Sciences and Numerical Simulation, 4, 3, 219-225, (2003) · doi:10.1515/IJNSNS.2003.4.3.219
[33] He, J.-H., A short remark on fractional variational iteration method, Physics Letters. A, 375, 38, 3362-3364, (2011) · Zbl 1252.49027 · doi:10.1016/j.physleta.2011.07.033
[34] He, J.-H., Asymptotic methods for solitary solutions and compactons, Abstract and Applied Analysis, 2012, (2012) · Zbl 1257.35158 · doi:10.1155/2012/916793
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.