×

A fourth-order compact difference scheme for the parabolic inverse problem with an overspecification at a point. (English) Zbl 1326.65125

Summary: The problem of finding the solution of partial differential equation with source control parameter has appeared increasingly in physical phenomena, for example, in the study of heat conduction process, chemical diffusion and control theory. In this paper, we use a high-order scheme for determining unknown control parameter and unknown solution of parabolic inverse problem. In the proposed numerical scheme, we replace the space derivative with a fourth-order compact finite difference approximation. We will investigate the stability and convergence of proposed scheme and show that the convergence order is \(\mathcal O(\tau^2+h^4)\). Also due to the usually ill-posed nature of inverse problems, we examine the stability of method with respect to perturbations of the data. Numerical results corroborate the theoretical results and high accuracy of proposed scheme in comparison with the other methods in the literature.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] DOI: 10.1016/j.jcp.2012.11.052 · Zbl 1287.65064 · doi:10.1016/j.jcp.2012.11.052
[2] DOI: 10.1088/0266-5611/4/3/005 · Zbl 0688.35104 · doi:10.1088/0266-5611/4/3/005
[3] DOI: 10.1016/0022-247X(90)90414-B · Zbl 0727.35137 · doi:10.1016/0022-247X(90)90414-B
[4] Cannon JR, J. Differ. Equ 65 pp 54– (1989)
[5] DOI: 10.1002/num.1690060207 · Zbl 0709.65105 · doi:10.1002/num.1690060207
[6] DOI: 10.1007/BF00420586 · Zbl 0767.35105 · doi:10.1007/BF00420586
[7] DOI: 10.1088/0266-5611/10/2/004 · Zbl 0805.65133 · doi:10.1088/0266-5611/10/2/004
[8] Deckert KL, Proc. Iowa Acad. Sci 70 pp 354– (1963)
[9] DOI: 10.1137/S003614109324306X · Zbl 0807.35069 · doi:10.1137/S003614109324306X
[10] DOI: 10.1063/1.527219 · doi:10.1063/1.527219
[11] Prilepko AI, Differ. Equ 23 pp 136– (1987)
[12] DOI: 10.1080/00036818008839304 · Zbl 0454.35045 · doi:10.1080/00036818008839304
[13] Ionkin NI, Differ. Equ 13 pp 204– (1977)
[14] DOI: 10.1137/0147091 · Zbl 0664.35075 · doi:10.1137/0147091
[15] DOI: 10.1016/S0096-3003(02)00063-2 · Zbl 1026.65079 · doi:10.1016/S0096-3003(02)00063-2
[16] DOI: 10.1016/j.mcm.2004.07.010 · Zbl 1080.35174 · doi:10.1016/j.mcm.2004.07.010
[17] DOI: 10.1016/S0307-904X(01)00010-5 · Zbl 0995.65098 · doi:10.1016/S0307-904X(01)00010-5
[18] DOI: 10.1016/j.mcm.2006.04.003 · Zbl 1137.65408 · doi:10.1016/j.mcm.2006.04.003
[19] DOI: 10.1016/j.camwa.2006.04.017 · Zbl 1125.65340 · doi:10.1016/j.camwa.2006.04.017
[20] DOI: 10.1007/s11075-008-9234-3 · Zbl 1162.65048 · doi:10.1007/s11075-008-9234-3
[21] DOI: 10.1080/00207160701481429 · Zbl 1149.65080 · doi:10.1080/00207160701481429
[22] DOI: 10.1016/j.cam.2009.06.017 · Zbl 1173.65059 · doi:10.1016/j.cam.2009.06.017
[23] DOI: 10.1080/17415977.2011.559655 · Zbl 1252.65160 · doi:10.1080/17415977.2011.559655
[24] DOI: 10.1080/17415977.2012.701627 · Zbl 1281.65124 · doi:10.1080/17415977.2012.701627
[25] Ashyralyev A, Int. J. Math. Comput 11 pp 73– (2011)
[26] Erdogan AS, Abst. Appl. Anal (2012)
[27] DOI: 10.1186/1687-2770-2014-5 · Zbl 1305.65221 · doi:10.1186/1687-2770-2014-5
[28] Ashyralyyev C, Abst. Appl. Anal (2013)
[29] Ashyralyev A, Malaysian J. Math. Sci 6 pp 139– (2012)
[30] DOI: 10.1016/j.amc.2010.09.032 · Zbl 1209.65093 · doi:10.1016/j.amc.2010.09.032
[31] DOI: 10.1186/1687-2770-2013-213 · Zbl 1296.35214 · doi:10.1186/1687-2770-2013-213
[32] DOI: 10.1016/j.nonrwa.2012.08.009 · Zbl 1256.35206 · doi:10.1016/j.nonrwa.2012.08.009
[33] DOI: 10.1016/j.matcom.2011.01.001 · Zbl 1219.65103 · doi:10.1016/j.matcom.2011.01.001
[34] DOI: 10.1016/j.amc.2013.10.035 · Zbl 1354.65182 · doi:10.1016/j.amc.2013.10.035
[35] DOI: 10.1080/17415977.2013.827184 · Zbl 1312.65150 · doi:10.1080/17415977.2013.827184
[36] Maa L, Int. J. Comput. Math 88 pp 384– (2011)
[37] DOI: 10.1016/j.cpc.2010.09.009 · Zbl 1219.65102 · doi:10.1016/j.cpc.2010.09.009
[38] DOI: 10.1016/j.amc.2006.09.109 · Zbl 1119.65089 · doi:10.1016/j.amc.2006.09.109
[39] DOI: 10.1016/j.apm.2008.02.007 · Zbl 1168.65378 · doi:10.1016/j.apm.2008.02.007
[40] DOI: 10.1016/j.amc.2004.03.003 · Zbl 1063.65099 · doi:10.1016/j.amc.2004.03.003
[41] DOI: 10.1016/j.amc.2013.02.040 · Zbl 1288.65142 · doi:10.1016/j.amc.2013.02.040
[42] DOI: 10.1016/S0378-4754(00)00221-4 · doi:10.1016/S0378-4754(00)00221-4
[43] DOI: 10.1016/S0010-4655(01)00470-2 · Zbl 0993.65107 · doi:10.1016/S0010-4655(01)00470-2
[44] DOI: 10.1016/j.apm.2011.08.025 · Zbl 1243.65116 · doi:10.1016/j.apm.2011.08.025
[45] DOI: 10.1016/0021-9991(92)90324-R · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[46] Quarteroni A, Numerical approximation of partial differential equations (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.