×

A non-trivial relation between some many-dimensional chaotic discrete dynamical systems and some one-dimensional chaotic discrete dynamical systems. (English) Zbl 1197.37005

Summary: Chaotic maps are very useful in practical applications. In this paper, we present a method for constructing the many-dimensional chaotic discrete dynamical systems using semiconjugacy property. The chaotic property in one dimension may be influenced the chaotic property in higher-dimensions. In fact, using the one-dimensional chaotic maps and semiconjugacy property, we construct some many-dimensional chaotic discrete dynamical systems. These systems may be used as random number generators in Monte Carlo simulations. Also, these systems may be used in practical applications such as chaotic cryptography and evolutionary algorithms.

MSC:

37-04 Software, source code, etc. for problems pertaining to dynamical systems and ergodic theory
37N99 Applications of dynamical systems
94A60 Cryptography

Software:

PSEUDORAN
Full Text: DOI

References:

[1] Sedaghat, H., Nonlinear Difference Equations, Theory with Applications to Social Science Models (2003), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 1020.39007
[2] M. Dehghan, C.M. Kent, R. Mazrooei-Sebdani, N.L. Ortiz, H. Sedaghat, Dynamics of rational difference equations containing quadratic terms, J. Difference Equations Appl., in press; M. Dehghan, C.M. Kent, R. Mazrooei-Sebdani, N.L. Ortiz, H. Sedaghat, Dynamics of rational difference equations containing quadratic terms, J. Difference Equations Appl., in press · Zbl 1196.39006
[3] Chan, D. M.; Chang, E. R.; Dehghan, M.; Kent, C. M.; Mazrooei-Sebdani, R.; Sedaghat, H., Asymptotic stability for difference equations with decreasing arguments, J. Difference Equations Appl., 12, 109-123 (2006) · Zbl 1093.39001
[4] Kulenovic, M. R.S.; Ladas, G., Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures (2002), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton, FL · Zbl 0981.39011
[5] Elaydi, S. N., Discrete Chaos (1999), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton, FL
[6] Devaney, R. L., An Introduction to Chaotic Dynamical Systems (1989), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0695.58002
[7] Li, T. Y.; Yorke, J. A., Period three implies chaos, Amer. Math. Monthly, 82, 985-992 (1975) · Zbl 0351.92021
[8] Z. Xiong, Symmetry breaking, multiple bifurcations, quasi-periodicity and chaos in a class of delay difference equations, Chaos Solitons Fractals, in press; Z. Xiong, Symmetry breaking, multiple bifurcations, quasi-periodicity and chaos in a class of delay difference equations, Chaos Solitons Fractals, in press
[9] Peng, M., Bifurcation and chaotic behavior in the Euler method for a Uçar prototype delay model, Chaos Solitons Fractals, 22, 483-493 (2004) · Zbl 1061.37022
[10] Uçar, A., On the chaotic behaviour of a prototype delayed dynamical system, Chaos Solitons Fractals, 16, 187-194 (2003) · Zbl 1033.37020
[11] Romanenko, E., Attractors of continuous difference equations, Comput. Math. Appl., 36, 377-390 (1998) · Zbl 0933.39036
[12] Wanga, L.; Huangc, G.; Huand, S., Distributional chaos in a sequence, Nonlinear Anal., 67, 2131-2136 (2007) · Zbl 1121.37018
[13] Li, W.-T., Bifurcation and global periodic solutions in a delayed facultative mutualism system, Physica D, 227, 51-69 (2007) · Zbl 1123.34055
[14] Tian, C.; Chen, G., Chaos in the sense of Li-Yorke in coupled map lattices, Physica A, 376, 246-252 (2007)
[15] Tian, C.; Chen, G., Chaos of a sequence of maps in a metric space, Chaos Solitons Fractals, 28, 1067-1075 (2006) · Zbl 1095.54018
[16] Chen, G.; Tian, C.; Shi, Y., Stability and chaos in 2-D discrete systems, Chaos Solitons Fractals, 25, 637-647 (2005) · Zbl 1071.37018
[17] Tian, C.; Xie, S., Further oscillation criteria for delay partial difference equations, Comput. Math. Appl., 47, 1905-1914 (2004) · Zbl 1068.39025
[18] Li, Z.; Shi, Y.; Zhang, C., Chaos induced by heteroclinic cycles connecting repellers in complete metric spaces, Chaos Solitons Fractals, 36, 746-761 (2008) · Zbl 1142.37014
[19] Lu, Jun-An; Wu, X.; Lü, J.; Kang, L., A new discrete chaotic system with rational fraction and its dynamical behaviors, Chaos Solitons Fractals, 22, 311-319 (2004) · Zbl 1060.37028
[20] Chang, L.; Lu, Jun-An; Deng, X., A new two-dimensional discrete chaotic system with rational fraction and its tracking and synchronization, Chaos Solitons Fractals, 24, 1135-1143 (2005) · Zbl 1143.37308
[21] Krishna, M. M.G.; Srivastava, A.; Periasamy, N., Rotational dynamics of surface probes in lipid vesicles, Biophys. Chem., 90, 123-133 (2001)
[22] Krishna, M. M.G.; Das, R.; Periasamy, N.; Nityanandac, R., Translational diffusion of fluorescent probes on a sphere: Monte Carlo simulations, theory, and fluorescence anisotropy experiment, J. Chem. Phys., 112, 8502-8514 (2000)
[23] González, J. A.; Pino, R., A random number generator based on unpredictable chaotic functions, Comput. Phys. Comm., 120, 109-114 (1999) · Zbl 1001.65004
[24] Mäkilä, P. M., On chaotic and random sequences, Physica D, 198, 309-318 (2004) · Zbl 1109.11038
[25] González, J. A.; Reyes, L. I.; Suárez, J. J.; Guerrero, L. E.; Gutiérrez, G., Chaos-induced true randomness, Physica A, 316, 259-288 (2002) · Zbl 1001.37028
[26] González, J. A.; Pino, R., Chaotic and stochastic functions, Physica A, 276, 425-440 (2000)
[27] Uche, O. U.; Stillinger, F. H.; Torquato, S., Constraints on collective density variables: Two dimensions, Phys. Rev. E, 70, 046122 (2004)
[28] James, F., Chaos and randomness, Chaos Solitons Fractals, 6, 221-226 (1995) · Zbl 0905.58021
[29] James, F., A review of pseudorandom number generators, Comput. Phys. Comm., 60, 329-344 (1990) · Zbl 0875.65021
[30] Ferrenberg, A. M.; Landau, D. P.; Won, Y. J., Monte Carlo simulations: Hidden errors from “good” random number generators, Phys. Rev. Lett., 69, 3382-3384 (1992)
[31] Amigo, J. M.; Kocarev, L.; Szczepanski, J., Theory and practice of chaotic cryptography, Phys. Lett. A, 366, 211-216 (2007) · Zbl 1203.94090
[32] Xiang, T.; Wong, K.; Liao, X., A novel symmetrical cryptosystem based on discretized two-dimensional chaotic map, Phys. Lett. A, 364, 252-258 (2007) · Zbl 1203.81052
[33] Xiang, T.; Liao, X.; Tang, G.; Chen, Y.; Wong, K., A novel block cryptosystem based on iterating a chaotic map, Phys. Lett. A, 349, 109-115 (2006) · Zbl 1195.81041
[34] Grammaticos, B.; Ramani, A.; Viallet, C. M., Solvable chaos, Phys. Lett. A, 336, 152-158 (2005) · Zbl 1369.37046
[35] Hasegawa, Hiroshi H.; Driebe, Dean J.; Li, Chun-Biu, Spectral decomposition of the stretching dynamics of the Arnold cat map, Phys. Lett. A, 319, 290-298 (2003) · Zbl 1029.37011
[36] Scharinger, J., Fast encryption of image data using chaotic Kolmogorov flows, J. Elec. Imag., 7, 318-725 (1998)
[37] Chen, G.; Mao, Y.; Chui, C., Symmetric image encryption scheme based on 3D chaotic cat maps, Chaos Solitons Fractals, 21, 749-761 (2004) · Zbl 1049.94009
[38] Gao, H.; Zhang, Y.; Liang, S.; Li, D., A new chaotic algorithm for image encryption, Chaos Solitons Fractals, 29, 393-799 (2006) · Zbl 1096.94006
[39] Guoping, T.; Xiaofeng, L.; Yong, C., A novel method for designing S-boxes based on chaotic maps, Chaos Solitons Fractals, 23, 413-419 (2005) · Zbl 1068.94017
[40] Papadimitriou, S.; Bezerianos, A.; Bountis, T.; Pavlides, G., Secure communication protocols with discrete nonlinear chaotic maps, J. Sys. Arch., 47, 61-72 (2001)
[41] Zilong, G.; Sun’an, W.; Jian, Z., A novel immune evolutionary algorithm incorporating chaos optimization, Patt. Recog. Lett., 27, 2-8 (2006)
[42] Junfeng, J.; Chi, M.; Xiaoqi, p., The application research of the chaos genetic algorithm (CGA) and its evaluation of the optimization efficiency, Acta Automat. Sin., 28, 935-942 (2002)
[43] Determan, J.; Foster, J. A., Using chaos in genetic algorithms, Proc. 1999 Congress on Evolutionary Computation, 3, 2094-2101 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.