×

A non-autonomous predator-prey model with infected prey. (English) Zbl 1404.37110

Summary: A non-constant eco-epidemiological model with SIS-type infectious disease in prey is formulated and investigated, it is assumed that the disease is endemic in prey before the invasion of predator and that predation is more likely on infected prey than on the uninfected. Sufficient conditions for both permanence and extinction of the infected prey, and the necessary conditions for the permanence of the infected prey are established. It is shown that the predation preference to infected prey may even increase the possibility of disease endemic, and that the introduction of new resource for predator could be helpful for it to eradicate the infected prey. Numerical simulations have been performed to verify/extend our analytical results.

MSC:

37N25 Dynamical systems in biology
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] M. E. Alexander; S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci., 189, 75-96 (2004) · Zbl 1073.92040 · doi:10.1016/j.mbs.2004.01.003
[2] A. M. Bate; F. M. Hilker, Disease in group-defending prey can benefit predators, Theor Ecol., 7, 87-100 (2014) · doi:10.1007/s12080-013-0200-x
[3] J. Chattopadhyay; O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36, 747-766 (1999) · Zbl 0922.34036 · doi:10.1016/S0362-546X(98)00126-6
[4] P. Chesson, Understanding the role of environmental variation in population and community dynamics, Theoret. Population. Biol., 64, 253-254 (2003) · doi:10.1016/j.tpb.2003.06.002
[5] J. P. Cohn, Saving the Salton Sea-Researchers work to understand its problems and provide possible solutions, Biosci., 50, 295-301 (2000)
[6] A. P. Dobson, The population biology of parasite-induced changes in host behavior, Q. Rev. Biol., 30, 139-165 (1988) · doi:10.1086/415837
[7] M. Fan; Y. Michael; K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size, Math. Biosci., 170, 199-208 (2001) · Zbl 1005.92030 · doi:10.1016/S0025-5564(00)00067-5
[8] M. Fan; Y. Kuang, Dynamics of a non-autonomous predator-prey system with the Beddington-Deangelis functional response, Math. Anal. Appl., 295, 15-39 (2004) · Zbl 1051.34033 · doi:10.1016/j.jmaa.2004.02.038
[9] M. Fan; Q. Wang; X. F. Zou, Dynamics of a non-autonomous ratio-dependent predator-prey system, Proc. Roy. Soc. Edinborgh Seet., 133, 97-118 (2003) · Zbl 1032.34044 · doi:10.1017/S0308210500002304
[10] X. Feng; Z. Teng; L. Zhang, The permanence for nonautonomous n-species Lotka-Volterra competitive systems with feedback controls, Rocky Mountain J. Math., 38, 1355-1376 (2008) · Zbl 1167.34018 · doi:10.1216/RMJ-2008-38-5-1355
[11] M. Friend, Avian disease at the Salton Sea, Hydrobiologia, 161, 293-306 (2002) · doi:10.1007/978-94-017-3459-2_21
[12] G. Griffiths; A. Wilby; M. Crawley; M. Thomas, Density-dependent effects of predator species-richness in diversity-function studies, Ecology, 89, 2986-2993 (2008) · doi:10.1890/08-0685.1
[13] H. W. Hethcote; W. Wang; L. Han; Z. Ma, A predator-prey model with infected prey, Theor. Popul. Biol., 66, 259-268 (2004) · doi:10.1016/j.tpb.2004.06.010
[14] J. C. Holmes; W. M. Bethel, Modifications of intermediate host behaviour by parasites, In: Canning, E. V., Wright, C. A. (Eds.), Behavioural Aspects of Parasite Transmission, Suppl I to Zool. f. Linnean Soc., 51, 123-149 (1972)
[15] M. Koopmans; B. Wilbrink; M. Conyn; G. Natrop; H. van der Nat; H. Vennema, Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands, Lancet., 363, 587-593 (2004) · doi:10.1016/S0140-6736(04)15589-X
[16] J. R. Krebs, Optimal foraging: decision rules for predators, In: Krebs, J. R., Davies, N.B. (Eds.), Behavioural Ecology: an Evolutionary approach, First ed. Blackwell Scientific Publishers, Oxford, 23-63 (1978)
[17] Y. Li; J. Wang; B. Sun; J. Tang; X. Xie; S. Pang, Modeling and analysis of the secondary routine dose against measles in China, Adv. Difference Equ., 89, 1-14 (2017) · Zbl 1422.92155 · doi:10.1186/s13662-017-1125-2
[18] S. Liu; L. Chen; Z. Liu, Extionction and permanence in nonautonomous competitive system with stage structure, J. Math. Anal. Appl., 274, 667-684 (2002) · Zbl 1039.34068 · doi:10.1016/S0022-247X(02)00329-3
[19] S. Liu, X. Xie and J. Tang, Competing population model with nonlinear intraspecific regulation and maturation delays, Int. J. Biomath., 5(2012), 1260007, 22 pp. · Zbl 1280.92053
[20] Y. Lu; D. Li; S. Liu, Modeling of hunting strategies of the predators in susceptible and infected prey, Appl. Math. Comput., 284, 268-285 (2016) · Zbl 1410.92129 · doi:10.1016/j.amc.2016.03.005
[21] Y. Lu; K. Pawelek; S. Liu, A stage-structured predator-prey model with predation over juvenile prey, Appl. Math. Comput., 297, 115-130 (2017) · Zbl 1411.34081 · doi:10.1016/j.amc.2016.10.035
[22] X. Niu; L. Zhang; Z. Teng, The asymptotic behavior of a nonautonomous eco-epidemic model with disease in the prey, Appl. Math. Model., 35, 457-470 (2011) · Zbl 1202.34098 · doi:10.1016/j.apm.2010.07.010
[23] C. Packer; R. D. Holt; P. J. Hudson; K. D. Lafferty; A. P. Dobson, Keeping the herds healthy and alert: Implications of predator control for infectious disease, Ecol. Lett., 6, 797-802 (2003) · doi:10.1046/j.1461-0248.2003.00500.x
[24] R. O. Peterson; R. E. Page, The rise and fall of Isle Royale wolves, 1975-1986, J. Mamm., 69, 89-99 (1988) · doi:10.2307/1381751
[25] G. P. Samanta, Analysis of a delay nonautonomous predator-prey system with disease in the prey, Nonlinear Anal. Model. Control, 15, 97-108 (2010) · Zbl 1217.93073
[26] A. Shi; P. Crowley; M. McPeek; J. Petranka; K. Strohmeier, Predation, competition and prey communities: A review of field experiments, Ann. Rev. Ecol. Semantics, 16, 269-311 (1985) · doi:10.1146/annurev.es.16.110185.001413
[27] M. Sieber; H. Malchow; F. M. Hilker, Disease-induced modification of prey competition in eco-epidemiological models, Ecological Complexity, 18, 74-82 (2014) · doi:10.1016/j.ecocom.2013.06.002
[28] X. Wang, S. Liu and X. Song, Dynamic of a non-autonomous HIV-1 infection model with delays, Int. J. Biomath., 6 (2013), 59-84.
[29] X. Wang; S. Liu; L. Rong, Permanence and extinction of a nonautonomous HIV-1 model with time delays, Discrete Contin. Dyn. Syst. Ser. B, 19, 1783-1800 (2014) · Zbl 1311.34168 · doi:10.3934/dcdsb.2014.19.1783
[30] Y. Xiao; L. Chen, Analysis of a three species eco-epidemiological model, J. Math. Anal. Appl., 258, 733-754 (2001) · Zbl 0967.92017 · doi:10.1006/jmaa.2001.7514
[31] Y. Xiao; L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171, 59-82 (2001) · Zbl 0978.92031 · doi:10.1016/S0025-5564(01)00049-9
[32] Y. Yang; J. Yin; C. Jin, Existence and attractivity of time periodic solutions for Nicholson’s blowflies model with nonlinear diffusion, Math. Methods Appl. Sci., 37, 1736-1754 (2014) · Zbl 1302.35028 · doi:10.1002/mma.2932
[33] T. Zhang; Z. Teng, On a nonautonomous SEIRS model in epidemiology, Bull. Math. Biol., 69, 2537-2559 (2007) · Zbl 1245.34040 · doi:10.1007/s11538-007-9231-z
[34] T. Zhang; Z. Teng, Permanence and extinction for a non-autonomous SIRS epidemic model with time delay, Appl. Math. Model., 33, 1058-1071 (2009) · Zbl 1168.34358 · doi:10.1016/j.apm.2007.12.020
[35] T. Zhang; Z. Teng; S. Gao, Threshold conditions for a non-autonomous epidemic model with vaccination, Appl. Anal., 87, 181-199 (2008) · Zbl 1144.34032 · doi:10.1080/00036810701772196
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.