×

A unifying explanation for the damping of turbulence by additives or external forces. (English) Zbl 1405.76016

Summary: Recent calculations for the turbulent flow of a suspension of solid spheres in a gas were carried out by solving a Navier Stokes equation for the fluid that recognizes the presence of particles as external point forces. These show that a strong damping of the fluid turbulence can be realized at remarkably small volume fractions. The suggestion is made that the presence of point forces, pseudo-point forces, or added point shear stresses could provide a general explanation for turbulence suppression caused by additives or by the acceleration of a turbulent boundary-layer.

MSC:

76F10 Shear flows and turbulence
Full Text: DOI

References:

[1] Finnicum, D.S., Hanratty, T.J.: Effect of favorable pressure gradients on turbulent boundary-layers. AIChE J. 4, 529–539 (1988). doi: 10.1002/aic.690340402 · doi:10.1002/aic.690340402
[2] Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002). doi: 10.1063/1.1516779 · Zbl 1185.76134 · doi:10.1063/1.1516779
[3] Julien, H.L., Kays, W.M., Moffat, R.J.: The turbulent boundary-layer on a porous plate: Experimental study of the effects of a favorable pressure gradient. Stanford Univ. Thermosci. Div. Tech. Rept. HMT-4 (1969)
[4] Kontomaris, K., Hanratty, T.J., McLaughlin, J.B.: An algorithm for tracking fluid particles in a spectral simulation of turbulent channel flow. J. Comput. Phys. 103, 231–242 (1992). doi: 10.1016/0021-9991(92)90398-I · Zbl 0763.76060 · doi:10.1016/0021-9991(92)90398-I
[5] Li, Y., McLaughlin, J.B., Kontamaris, K., Portela, L.: Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13, 2957–2967 (2001). doi: 10.1063/1.1396846 · Zbl 1184.76325 · doi:10.1063/1.1396846
[6] Lyons, S.L., Hanratty, T.J., McLaughlin, J.B.: Large scale computer simulation of fully developed turbulent channel flow with heat transfer. Int. J. Numer. Methods Fluids 13, 999–1028 (1991). doi: 10.1002/fld.1650130805 · Zbl 0741.76060 · doi:10.1002/fld.1650130805
[7] Massah, H., Hanratty, T.J.: Added stresses because of the presence of FENE-P bead-spring chains in a random velocity field. J. Fluid Mech. 337, 67–101 (1997). doi: 10.1017/S0022112097004916 · Zbl 0900.76026 · doi:10.1017/S0022112097004916
[8] Mito, Y., Hanratty, T.J.: Effect of feedback and inter-particle collisions in an idealized gas–liquid annular flow. Int. J. Multiph. Flow 32, 692–716 (2006). doi: 10.1016/j.ijmultiphaseflow.2006.02.007 · Zbl 1136.76577 · doi:10.1016/j.ijmultiphaseflow.2006.02.007
[9] Warholic, M.D., Massah, H., Hanratty, T.J.: Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27, 461–472 (1999). doi: 10.1007/s003480050371 · doi:10.1007/s003480050371
[10] Warholic, M.D., Heist, D.K., Katcher, M., Hanratty, T.J.: A study with particle-image velocimetry of the influence of drag-reducing polymers on the structure of turbulence. Exp. Fluids 31, 474–483 (2001). doi: 10.1007/s003480100288 · doi:10.1007/s003480100288
[11] White, F.W.: Viscous Fluid Flow. McGraw-Hill, New York (1974) · Zbl 0356.76003
[12] Xu, J., Dong, S., Maxey, M.R., Karniadakis, G.: Turbulent drag reduction by constant near-wall forcing. J. Fluid Mech. 582, 79–101 (2007). doi: 10.1017/S0022112007005460 · Zbl 1114.76037 · doi:10.1017/S0022112007005460
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.