×

Inherent features of fractal sets and key attributes of fractal models. (English) Zbl 1501.28007

Summary: The main goal of this work is to develop a robust framework for an exhaustive description of essential properties of a fractal object. For this purpose, the inherent features of fractal sets are scrutinized. The topological, metrological, morphological, and topographical attributes of fractal systems are delineated. The criteria of the fractal connectedness are established. The characteristics of the fractal connectivity and ramification are ascertained. The index of the fractal loopiness is introduced. The quantifications of the fractal heterogeneity, lacunarity, and anisotropy are briefly sketched out. A set of key attributes which enable a proper characterization of fractal system are suggested.

MSC:

28A80 Fractals
Full Text: DOI

References:

[1] Mandelbrot, B. B., The Fractal Geometry of Nature (W. H. Freeman and Co., New York, 1999).
[2] Zubair, M., Mughal, M. J. and Naqvi, Q. A., Electromagnetic Fields and Waves in Fractional Dimensional Space (Springer, New York, 2012). · Zbl 1244.78001
[3] Balankin, A. S., Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems, Chaos Solitons Fractals132 (2020) 109572, https://doi.org/10.1016/j.chaos.2019.109572. · Zbl 1434.28011
[4] Falconer, K., Fractal Geometry — Mathematical Foundations and Applications, 3rd edn. (Wiley, New York, 2014). · Zbl 1285.28011
[5] Stanley, H. E., Application of fractal concepts to polymer statistics and to anomalous transport in randomly porous media, J. Stat. Phys.36(5/6) (1984) 843-860, https://doi.org/10.1007/BF01012944.
[6] Balankin, A. S., Effective degrees of freedom of a random walk on a fractal, Phys. Rev. E92 (2015) 062146, https://doi.org/10.1103/PhysRevE.92.062146.
[7] Balka, R., Buczolich, Z. and Elekes, M., A new fractal dimension: The topological Hausdorff dimension, Adv. Math.274 (2015) 881-927, https://doi.org/10.1016/j.aim.2015.02.001. · Zbl 1379.28005
[8] Nakayama, T. and Yakubo, K., Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations, Rev. Mod. Phys.66(2) (1994) 381-443, https://doi.org/10.1103/RevModPhys.66.381.
[9] Havlin, S. and Ben-Avraham, D., Diffusion in disordered media, Adv. Phys.51 (2002) 187-292, https://doi.org/10.1080/00018730110116353.
[10] Balankin, A. S., A continuum framework for mechanics of fractal materials I: From fractional space to continuum with fractal metric, Eur. Phys. J. B88 (2015) 90, https://doi.org/10.1140/epjb/e2015-60189-y.
[11] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J.30 (1981) 713-747, https://www.jstor.org/stable/24893080. · Zbl 0598.28011
[12] Barnsley, M. F., Fractals Everywhere, 2nd edn. (Academic Press, New York, 1993). · Zbl 0784.58002
[13] Reiter, C., With J: 101 ways to build a Sierpinski triangle, ACM SIGAPL APL Quote Quad27(4) (1997) 8-16, https://doi.org/10.1145/291419.291425.
[14] Gneiting, T. and Schlather, M., Stochastic models that separate fractal dimension and the Hurst effect, SIAM Rev.46 (2004) 269-282, https://doi.org/10.10.1137/S0036144501394387. · Zbl 1062.60053
[15] Ruiz-Medina, M. D., Porcu, E. and Fernandez-Pascual, R., The Dagum and auxiliary covariance families: Towards reconciling two-parameter models that separate fractal dimension and the Hurst effect, Probabilistic Eng. Mech.26 (2011) 259-268, https://doi.org/10.1016/j.probengmech.2010.08.002.
[16] Patiño-Ortiz, J., Carreno-Aguilera, R., Balankin, A. S., Patiño-Ortiz, M., Tovar-Rodriguez, J. C., Acevedo-Mosqueda, M. A., Martinez-Cruz, M. A. and Yu, W., Seismic activity seen through evolution of the Hurst exponent model in 3D, Fractals24(4) (2016) 1650045, https://doi.org/10.1142/S0218348X16500456.
[17] Gouyet, J. F., Physics and Fractal Structures (Springer, New York, 1996). · Zbl 0773.58015
[18] Malek, E., Topology and geometry for physicists, Proc. Sci.323 (2018) 002, https://doi.org/10.22323/1.323.0002.
[19] Taylor, T. D., Connectivity properties of Sierpiński relatives, Fractals19(4) (2011) 481-506, https://doi.org/10.1142/S0218348X11005531. · Zbl 1238.28010
[20] Luo, J. J. and Liu, J. C., On the classification of fractal squares, Fractals24(1) (2016) 1650008, https://doi.org/10.1142/S0218348X16500080.
[21] Gefen, Y., Mandelbrot, B. B. and Aharony, A., Critical phenomena on fractal lattices, Phys. Rev. Lett.45 (1980) 855-858, https://doi.org/10.1103/PhysRevLett.45.855.
[22] Balankin, A. S., The topological Hausdorff dimension and transport properties of Sierpiński carpets, Phys. Lett. A381 (2017) 2801-2808, https://doi.org/10.1016/j.physleta.2017.06.049. · Zbl 1374.11074
[23] Balankin, A. S., Mena, B. and Martínez-Cruz, M. A., Topological Hausdorff dimension and geodesic metric of critical percolation cluster in two dimensions, Phys. Lett. A381 (2017) 2665-2672, https://doi.org/10.1016/j.physleta.2017.06.028. · Zbl 1375.82048
[24] Balankin, A. S., Martínez-Cruz, M. A., Álvarez-Jasso, M. D., Patiño-Ortiz, M. and Patiño-Ortiz, J., Effects of ramification and connectivity degree on site percolation threshold on regular lattices and fractal networks, Phys. Lett. A383 (2019) 957-966, https://doi.org/10.1016/j.physleta.2018.12.018. · Zbl 1482.82032
[25] Lotfi, H., The \(\mu \)-topological Hausdorff dimension, Extr. Math.34 (2019) 237-254, https://doi.org/10.17398/2605-5686.34.2.237. · Zbl 1457.28005
[26] Zhang, Y.-F., A lower bound of topological Hausdorff dimension of fractal squares, Fractals28 (2020) 2050115, https://doi.org/10.1142/S0218348X20501157. · Zbl 1445.28021
[27] Ruan, H. J. and Xiao, J. C., When does a Bedford-McMullen carpet have equal Hausdorff and topological Hausdorff dimensions, Fractals29(7) (2021) 2150194, https://doi.org/10.1142/S0218348X21501942. · Zbl 1492.28004
[28] Ma, J. and Zhang, Y. F., Topological Hausdorff dimension of fractal squares and its application to Lipschitz classification, Nonlinearity33 (2020) 6053, https://doi.org/10.1088/1361-6544/aba0c4. · Zbl 1453.28009
[29] Golmankhaneh, A. K. and Balankin, A. S., Sub- and super-diffusion on Cantor sets: Beyond the paradox, Phys. Lett. A382 (2018) 960-967, https://doi.org/10.1016/j.physleta.2018.02.009. · Zbl 1383.76439
[30] Taylor, T. D., Hudson, C. and Anderson, A., Examples of using binary cantor sets to study the connectivity of Sierpiński relatives, Fractals20(1) (2012) 61-75, https://doi.org/10.1142/S0218348X12500065. · Zbl 1242.28017
[31] Rao, F., Wang, X. and Wen, S., On the topological classification of fractal squares, Fractals25(3) (2017) 1750028, https://doi.org/10.1142/S0218348X17500281. · Zbl 1371.28027
[32] Leung, K. S., Luo, J. J. and Wang, L., Connectedness of a class of self-affine carpets, Fractals28(4) (2020) 2050065, https://doi.org/10.1142/S0218348X20500656. · Zbl 1441.28009
[33] Huang, L. and Rao, H., A dimension drop phenomenon of fractal cubes, J. Math. Anal. Appl.497(2) (2021) 124918, https://doi.org/10.1016/j.jmaa.2020.124918. · Zbl 1461.28004
[34] Rozenfeld, H. D., Kirk, J. E., Bollt, E. M. and Ben-Avraham, D., Statistics of cycles: How loopy is your network?J. Phys. A, Math. Gen.38 (2005) 4589-4595, https://doi.org/10.1088/0305-4470/38/21/005. · Zbl 1195.82024
[35] Bianconi, G. and Capocci, A., Number of loops of size \(h\) in growing scale-free networks, Phys. Rev. Lett.90 (2003) 078701, https://doi.org/10.1103/PhysRevLett.90.078701.
[36] Tejedor, A., Longjas, A., Zaliapin, I. and Foufoula-Georgiou, E., Delta channel networks: 2. Metrics of topologic and dynamic complexity for delta comparison, physical inference, and vulnerability assessment, Water Resour. Res.51 (2015) 4019-4045, https://doi.org/10.1002/2014WR016604.
[37] Grosberg, A. Y., Feigel, A. and Rabin, Y., Flory-type theory of a knotted ring polymer, Phys. Rev. E54 (1996) 6618-6622, https://doi.org/10.1103/PhysRevE.54.6618.
[38] Micheletti, C., Marenduzzo, D. and Orlandini, E., Polymers with spatial or topological constraints: Theoretical and computational results, Phys. Rep.504 (2011) 1-73, https://doi.org/10.1016/j.physrep.2011.03.003. · Zbl 1211.82070
[39] Fielden, S. D. P., Leigh, D. A. and Woltering, S. L., Molecular knots, Angew. Chem. Int. Ed.56 (2017) 11166-11194, https://doi.org/10.1002/anie.201702531.
[40] Adams, C. C., The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots (W. H. Freeman and Co., New York, 1994). · Zbl 0840.57001
[41] Fathauer, R. W., Some three-dimensional self-similar knots, in Proceedings of Bridges 2010: Mathematics, Music, Art, Architecture, Culture, eds. Hart, G. W. and Sarhangi, R. (Tessellations Publishing, 2010), pp. 103-110.
[42] Duan, J.-W., Zheng, Z., Zhou, P.-P. and Qiu, W.-Y., The architecture of Sierpinski knots, MATCH Commun. Math. Comput. Chem.68 (2012) 595-610.
[43] Federer, H., Curvature measures, Trans. Am. Math. Soc.93 (1959) 418-491, https://doi.org/10.2307/1993504. · Zbl 0089.38402
[44] Winter, S. and Zähle, M., Fractal curvature measures of self-similar sets, Adv. Geom.13 (2013) 229-244, https://doi.org/10.1515/advgeom-2012-0026. · Zbl 1268.28002
[45] Winter, S., Minkowski content and fractal curvatures of self-similar tilings and generator formulas for self-similar sets, Adv. Math.274 (2015) 285-322, https://doi.org/10.1016/j.aim.2015.01.005. · Zbl 1369.28010
[46] Dima, I., Popp, R., Strichartz, R. S. and Wiese, S. C., A convex surface with fractal curvature, Fractals28(4) (2020) 2050059, https://doi.org/10.1142/S0218348X20500590. · Zbl 1441.28006
[47] Saleur, H., Conformal invariance for polymers and percolation, J. Phys. A: Math. Gen.20 (1987) 455-470, https://doi.org/10.1088/0305-4470/20/2/031.
[48] Duplantier, B., Two-dimensional fractal geometry, critical phenomena and conformal invariance, Phys. Rep.184 (1989) 229-257, https://doi.org/10.1016/0370-1573(89)90042-2.
[49] Nakayama, Y., Scale invariance vs conformal invariance, Phys. Rep.569 (2015) 1-93, https://doi.org/10.1016/j.physrep.2014.12.003.
[50] Peres, Y., Rams, M. Ĺ., Simon, K. Ă. and Solomyak, B., Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets, Proc. Am. Math. Soc.129 (2001) 2689-2699, https://doi.org/10.1090/S0002-9939-01-05969-X. · Zbl 0980.28005
[51] Tyson, J. T. and Wu, J. M., Quasiconformal dimensions of self-similar fractals, Rev. Mat. Iberoam.22 (2006) 205-258, https://projecteuclid.org/euclid.rmi/1148492181. · Zbl 1108.30015
[52] Kessebohmer, M. and Kombrink, S., Fractal curvature measures and Minkowski content for self-conformal subsets of the real line, Adv. Math.230 (2012) 2474-2512, https://doi.org/10.1016/j.aim.2012.04.023. · Zbl 1248.28013
[53] DiMarco, C. A., Fractal curves and rugs of prescribed conformal dimension, Topol. Appl.248 (2018) 117-127, https://doi.org/10.1016/j.topol.2018.08.005. · Zbl 1402.28006
[54] Edgar, G. A., Measure, Topology and Fractal Geometry, 2nd edn. (Springer, New York, 2008). · Zbl 1152.28008
[55] Barnsley, M. F., Superfractals (Cambridge University Press, Cambridge, 2006). · Zbl 1123.28007
[56] Adda, F. Ben, Mathematical model for fractal manifold, Int. J. Pure Appl. Math.38 (2007) 155-186, https://ijpam.eu/contents/2007-38-2/2/2.pdf. · Zbl 1151.58001
[57] Porchon, H., Fractal topology foundations, Topol. Its Appl.159(14) (2012) 3156-3170, https://doi.org/10.1016/j.topol.2012.06.007. · Zbl 1306.54004
[58] Zelenyi, L. M. and Milovanov, A. V., Fractal topology and strange kinetics: From percolation theory to problems in cosmic electrodynamics, Phys.-Usp.47(8) (2004) 749-788, https://doi.org/10.1070/PU2004v047n08ABEH001705.
[59] Montiel, M. E., Aguado, A. S. and Zalusk, E., Topology in fractals, Chaos Solitons Fractals7(8) (1996) 1187-1201, https://doi.org/10.1016/0960-0779(95)00109-3. · Zbl 1080.28503
[60] Balankin, A. S., Samayoa-Ochoa, D., Miguel, I. A., Patiño-Ortiz, J. and Martínez-Cruz, M. Á., Fractal topology of hand-crumpled paper, Phys. Rev. E81 (2010) 061126, https://doi.org/10.1103/PhysRevE.81.061126.
[61] Balankin, A. S., Bory-Reyes, J., Luna-Elizarrarás, M. E. and Shapiro, M., Cantor-type sets in hyperbolic numbers, Fractals24(4) (2016) 1650051, https://doi.org/10.1142/S0218348X16500511. · Zbl 1357.28008
[62] Cristea, L. L. and Steinsky, B., Mixed labyrinth fractals, Topol. Its Appl.229 (2017) 112-125, https://doi.org/10.1016/j.topol.2017.06.022. · Zbl 1381.28008
[63] Clarke, K. C. and Romero, B. E., On the topology of topography: A review, Cartogr. Geogr. Inf. Sci.44(3) (2017) 271-282, https://doi.org/10.1080/15230406.2016.1164625.
[64] Falconer, K. J. and Marsh, D. T., On the Lipschitz equivalence of Cantor sets, Mathematika39 (1992) 223-233, https://doi.org/10.1112/S0025579300014959. · Zbl 0791.28006
[65] Ruan, H. J. and Wang, Y., Topological invariants and Lipschitz equivalence of fractal squares, J. Math. Anal. Appl.451(1) (2017) 327-344, https://doi.org/10.1016/j.jmaa.2017.02.012. · Zbl 1359.28009
[66] Luo, J. J., Self-similar sets, simple augmented trees and their Lipschitz equivalence, J. Lond. Math. Soc.99(2) (2019) 428-446, https://doi.org/10.1112/jlms.12181. · Zbl 1502.28007
[67] Torres-Arguelles, V., Oleschko, K., Tarquis, A. M., Korvin, G., Gaona, C., Parrot, J.-F. and Ventura-Ramos, E., Fractal metrology for biogeosystems analysis, Biogeosciences7 (2010) 3799-3815, https://doi.org/10.5194/bg-7-3799-2010.
[68] Whitney, H., Differentiable manifolds, Ann. Math.37 (1936) 645-680, https://doi.org/10.2307/1968482. · JFM 62.1454.01
[69] Whitney, H., The self-intersections of a smooth \(n\)-manifold in \(2n\)-space, Ann. Math.45(2) (1944) 220-246, https://doi.org/10.2307/1969265. · Zbl 0063.08237
[70] Nash, J., The imbedding problem for Riemannian manifolds, Ann. Math.63 (1956) 20-63, https://doi.org/10.2307/1969989. · Zbl 0070.38603
[71] Sauer, T., Yorke, J. A. and Casdagli, M., Embeddology, J. Stat. Phys.65(3/4) (1991) 579-616, https://doi.org/10.1007/BF01053745. · Zbl 0943.37506
[72] Julien, A. and Savinien, J., Embeddings of self-similar ultrametric Cantor sets, Topol. Appl.158 (2011) 2148-2157, https://doi.org/10.1016/j.topol.2011.07.009. · Zbl 1246.37030
[73] Orbach, R., Dynamics of fractal networks, Science231 (1986) 814-819, https://doi.org/10.1126/science.231.4740.814.
[74] Mosco, U., Invariant field metrics and dynamical scalings on fractals, Phys. Rev. Lett.79 (1997) 4067-4070, https://doi.org/10.1103/PhysRevLett.79.4067.
[75] Telcs, T., The Art of Random Walks (Springer, New York, 2006). · Zbl 1104.60003
[76] Burioni, R. and Cassi, D., Random walks on graphs: Ideas, techniques and results, J. Phys. A: Math. Gen.38 (2005) R45-R78, https://doi.org/10.1088/0305-4470/38/8/R01. · Zbl 1076.82023
[77] Sotiriou, T. P., Visser, M. and Weinfurtner, S., From dispersion relations to spectral dimension — and back again, Phys. Rev. D84 (2011) 104018, https://doi.org/10.1103/PhysRevD.84.104018.
[78] Balankin, A. S., Physics in space-time with scale-dependent metrics, Phys. Lett. A377 (2013) 1606-1610, https://doi.org/10.1016/j.physleta.2013.04.040. · Zbl 1317.83033
[79] Calcagni, G., Multiscale spacetimes from first principles, Phys. Rev. D95 (2017) 064057, https://doi.org/10.1103/PhysRevD.95.064057.
[80] Barlow, M. T. and Bass, R. F., Brownian motion and harmonic analysis on Sierpinski carpets, Can. J. Math.51(4) (1999) 673-744, https://doi.org/10.4153/CJM-1999-031-4. · Zbl 0945.60071
[81] Jonsson, T. and Stefánsson, S., The spectral dimension of random brushes, J. Phys. A: Math. Theor.41 (2008) 045005, https://doi.org/10.1088/1751-8113/41/4/045005. · Zbl 1136.82322
[82] Durhuus, B., Jonsson, T. and Wheater, J. F., The spectral dimension of generic trees, J. Stat. Phys.128 (2007) 1237-1260, https://doi.org/10.1007/s10955-007-9348-3. · Zbl 1136.82006
[83] Balankin, A. S., Golmankhaneh, A. K., Patiño-Ortiz, J. and Patiño-Ortiz, M., Noteworthy fractal features and transport properties of Cantor tartans, Phys. Lett. A382 (2018) 1534-1539, https://doi.org/10.1016/j.physleta.2018.04.011. · Zbl 1396.28008
[84] Voller, V. R. and Reis, F. D. A. Aarão, Determining effective conductivities of fractal objects, Int. J. Therm. Sci.159 (2021) 106577, https://doi.org/10.1016/j.ijthermalsci.2020.106577.
[85] Fraser, J. M. and Howroyd, D. C., Assouad type dimensions for self-affine sponges, Ann. Acad. Sci. Fenn. Math.42 (2017) 149-174, https://doi.org/10.5186/aasfm.2017.4213. · Zbl 1364.28007
[86] Golmankhaneh, A. K. and Baleanu, D., On a new measure on fractals, J. Inequal. Appl.2013 (2013) 522, https://doi.org/10.1186/1029-242X-2013-522. · Zbl 1295.28011
[87] Milicic, S., Box-counting dimensions of generalised fractal nests, Chaos Solitons Fractals113 (2018) 125-134, https://doi.org/10.1016/j.chaos.2018.05.025. · Zbl 1404.28007
[88] Schmutz, M., The Hausdorff dimension as an intrinsic metric property of fractals, Europhys. Lett.2 (1986) 897-899, https://doi.org/10.1209/0295-5075/2/12/002.
[89] Beliaev, D. and Smirnov, S., Harmonic measure on fractal sets, in Proceedings of the European Congress of Mathematics (European Mathematical Society, Zurich, 2005), pp. 41-59, https://doi.org/10.4171/009-1/3. · Zbl 1079.30026
[90] Sturm, K. T., On the geometry of metric measure spaces: I, Acta Math.196 (2006) 65-131, https://doi.org/10.1007/s11511-006-0002-8. · Zbl 1105.53035
[91] Saltan, M., Özdemir, Y. and Demir, B., Geodesics of the Sierpinski gasket, Fractals26(3) (2018) 1850024, https://doi.org/10.1142/S0218348X1850024X. · Zbl 1433.28028
[92] Cristea, L. L. and Steinsky, B., Distances in Sierpinski graphs and on the Sierpinski gasket, Aequ. Math.85 (2013) 201-219, https://doi.org/10.1007/s00010-013-0197-7. · Zbl 1275.28007
[93] Li, Y. and Xi, L., Manhattan property of geodesic paths on self-affine carpets, Arch. Math.111 (2018) 279-285, https://doi.org/10.1007/s00013-018-1199-4. · Zbl 1400.28017
[94] Hino, M., Geodesic distances and intrinsic distances on some fractal sets, Publ. Res. Inst. Math. Sci.50 (2014) 181-205, https://doi.org/10.4171/PRIMS/129. · Zbl 1294.31010
[95] Teplyaev, A., Harmonic coordinates on fractals with finitely ramified cell structure, Can. J. Math.60(2) (2008) 457-480, https://doi.org/10.4153/CJM-2008-022-3. · Zbl 1219.28012
[96] Hambly, B. M. and Jones, O. D., Modelling transport in disordered media via diffusion on fractals, Math. Comput. Model.31 (2000) 129-142, https://doi.org/10.1016/S0895-7177(00)00080-7. · Zbl 1042.60524
[97] Haynes, C. P. and Roberts, A. P., Generalization of the fractal Einstein law relating conduction and diffusion on networks, Phys. Rev. Lett.103 (2009) 020601, https://doi.org/10.1103/PhysRevLett.103.020601.
[98] Balankin, A. S., Bory-Reyes, J. and Shapiro, M., Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric, Physica A444 (2016) 345-359, https://doi.org/10.1016/j.physa.2015.10.035. · Zbl 1400.53075
[99] Weberszpil, J. and Chen, W., Generalized Maxwell relations in thermodynamics with metric derivatives, Entropy19(8) (2017) 407, https://doi.org/10.3390/e19080407.
[100] Liang, Y., Xu, W., Chen, W. and Weberszpil, J., From fractal to a generalized fractal: Non-power-function structal metric, Fractals27(5) (2019) 1950083, https://doi.org/10.1142/S0218348X1950083X. · Zbl 1434.28026
[101] Ramsay, J. G. and Huber, M., The Techniques of Modern Structural Geology (Academic Press, New York, 1987).
[102] Soille, P., Morphological Image Analysis: Principles and Applications (Springer, New York, 2013). · Zbl 1012.68212
[103] Eames, A. J. J., Again: ‘The New Morphology’, New Phytol.50 (1951) 17-35, https://www.jstor.org/stable/2429143.
[104] Körner, C., Neumayer, M., Riedl, S. P. M. and Smeets-Scheel, A., Functional morphology of mountain plants, Flora182 (1989) 353-383, https://doi.org/10.1016/S0367-2530(17)30426-7.
[105] Stach, E., Structural morphology and self-organization, WIT Trans. Ecol. Environ.138 (2010) 30-40, https://doi.org/10.2495/DN100041.
[106] Liu, J., Chalivendra, V., Goldsmith, C. L. and Huang, W., Multi-scale regular-fractal topography characterization and modeling, in Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Vol. 10 (American Society of Mechanical Engineers, 2015), V010T13A032:1-V010T13A032:11, https://doi.org/10.1115/IMECE2014-40214.
[107] Burger, B., Andrade, J. S. Jr. and Herrmann, H. J., A comparison of hydrological and topological watersheds, Sci. Rep.8 (2018) 10586, https://doi.org/10.1038/s41598-018-28470-2.
[108] Serra, J., Image Analysis and Mathematical Morphology (Academic Press, Orlando, 1983).
[109] Sagar, B. S. Daya, Fractal relations of a morphological skeleton, Chaos Solitons Fractals7 (1996) 1871-1879, https://doi.org/10.1016/S0960-0779(96)00037-9.
[110] Sagar, B. S. Daya, Omoregie, C. and Rao, B. S. Prakasa, Morphometric relations of fractal-skeletal based channel network model, Discrete Dyn. Nat. Soc.2 (1998) 77-92, https://doi.org/10.1155/S1026022698000065.
[111] Radhakrishnan, P., Sagar, B. S. Daya and Lian, T. L., Estimation of fractal dimension through morphological decomposition, Chaos Solitons Fractals21 (2004) 563-572, https://doi.org/10.1016/j.chaos.2003.12.085. · Zbl 1049.68147
[112] Sakhr, J. and Nieminen, J. M., Local box-counting dimensions of discrete quantum eigenvalue spectra: Analytical connection to quantum spectral statistics, Phys. Rev. E97 (2018) 030202(R), https://doi.org/10.1103/PhysRevE.97.030202.
[113] Beck, C., Upper and lower bounds on the Renyi dimensions and the uniformity of multifractals, Physica D41 (1990) 67-78, https://doi.org/10.1016/0167-2789(90)90028-N. · Zbl 0698.60021
[114] Balankin, A. S., Izotov, A. D. and Novikov, V. U., Multifractal analysis of relations between structural and mechanical parameters of polymer-matrix composites, Inorg. Mater.35 (1999) 1047-1053, http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1995720.
[115] Chmiela, J., Słota, D. and Szala, J., Analysis of emptiness (lacunarity) as a measure of the degree of space filling and of the internal structure of a set, Mater. Charact.56 (2006) 421-428, https://doi.org/10.1016/j.matchar.2005.12.018.
[116] Panigrahy, C., Seal, A., Mahato, N. K. and Bhattacharjee, D., Differential box counting methods for estimating fractal dimension of gray-scale images: A survey, Chaos Solitons Fractals126 (2019) 178-202, https://doi.org/10.1016/j.chaos.2019.06.007. · Zbl 1448.65020
[117] Backes, A. R., A new approach to estimate lacunarity of texture images, Pattern Recognit. Lett.34 (2013) 1455-1461, https://doi.org/10.1016/j.patrec.2013.05.008.
[118] N’Diaye, M., Degeratu, C., Bouler, J. M. and Chappard, D., Biomaterial porosity determined by fractal dimensions, succolarity and lacunarity on microcomputed tomographic images, Mater. Sci. Eng. C33 (2013) 2025-2030, https://doi.org/10.1016/j.msec.2013.01.020.
[119] Xia, Y., Cai, J., Perfect, E., Wei, W., Zhang, Q. and Meng, Q., Fractal dimension, lacunarity and succolarity analyses on CT images of reservoir rocks for permeability prediction, J. Hydrol.579 (2019) 124198, https://doi.org/10.1016/j.jhydrol.2019.124198.
[120] Vernon-Carter, J., Lobato-Calleros, C., Escarela-Perez, R., Rodriguez, E. and Alvarez-Ramirez, J., A suggested generalization for the lacunarity index, Physica A388 (2009) 4305-4314, https://doi.org/10.1016/j.physa.2009.07.032.
[121] de Melo, R. H. C. and Conci, A., How succolarity could be used as another fractal measure in image analysis, Telecommun. Syst.52 (2013) 1643-1655, https://doi.org/10.1007/s11235-011-9657-3.
[122] de Melo, R. H. C. and Conci, A., Succolarity: Defining a method to calculate this fractal measure, in Proceedings of the 15th International Conference on Systems, Signals and Image Processing (IEEE, 2008), pp. 291-294, https://doi.org/10.1109/IWSSIP.2008.4604424.
[123] Cojocaru, J. I. R., Popescu, D. and Nicolae, I. E., Texture classification based on succolarity, in Proceedings of the 2013 21st Telecommunications Forum Telfor (2013), https://doi.org/10.1109/TELFOR.2013.6716275.
[124] Barabási, A.-L. and Stanley, N. E., Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995). · Zbl 0838.58023
[125] Ramasco, J. J., López, J. M. and Rodríguez, M. A., Generic dynamic scaling in kinetic roughening, Phys. Rev. Lett.84 (2000) 2199-2203, https://doi.org/10.1103/PhysRevLett.84.2199.
[126] Balankin, A. S., Morales, D., Susarrey, O., Samayoa, D., Martinez-Trinidad, J., Marquez, J. and García, R., Self-similar roughening of drying wet paper, Phys. Rev. E73 (2006) 065105(R), https://doi.org/10.1103/PhysRevE.73.065105.
[127] Balankin, A. S., Dynamic scaling approach to study time series fluctuations, Phys. Rev. E76 (2007) 056120, https://doi.org/10.1103/PhysRevE.76.056120.
[128] Campos-Silva, I., Balankin, A. S., Sierra, A. H., López-Perrusquia, N., Escobar-Galindo, R. and Morales-Matamoros, D., Characterization of rough interfaces obtained by boriding, Appl. Surf. Sci.255 (2008) 2596-2602, https://doi.org/10.1016/j.apsusc.2008.07.142.
[129] Barabási, A. L., Szépfalusy, P. and Vicsek, T., Multifractal spectra of multi-affine functions, Physica A178 (1991) 17-28, https://doi.org/10.1016/0378-4371(91)90072-K.
[130] Brú, A., Albertos, S., Subiza, J. L., García-Asenjo, J. L. and Brú, I., The universal dynamics of tumor growth, Biophys. J.85 (2003) 2948-2961, https://doi.org/10.1016/S0006-3495(03)74715-8.
[131] Balankin, A. S., Susarrey, O., García-Paredes, R., Morales, L., Samayoa, D. and López, J. A., Intrinsically anomalous roughness of admissible crack traces in concrete, Phys. Rev. E72 (2005) 065101, https://doi.org/10.1103/PhysRevE.72.065101.
[132] A. S. Balankin, D. M. Matamoros and I. Campos, Intrinsic nature of anomalous crack roughening in an anisotropic brittle composite, Philos. Mag. Lett.80 (2000) 165-172, doi:10.1080/095008300176290.
[133] Balankin, A. S., Susarrey, O. and Marquez-Gonzales, J., Scaling properties of pinned interfaces in fractal media, Phys. Rev. Lett.90 (2003) 096101, https://doi.org/10.1103/PhysRevLett.90.096101.
[134] Daniel, E. B., Camp, J. V., LeBoeuf, E. J., Penrod, J. R., Dobbins, J. P. and Abkowitz, M. D., Watershed modeling and its applications: A state-of-the-art review, Open Hydrol. J.5 (2011) 26-50, https://doi.org/10.2174/1874378101105010026.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.