×

Velocity and spatial distribution of inertial particles in a turbulent channel flow. (English) Zbl 1430.76469

Summary: We present experimental observations of the velocity and spatial distribution of inertial particles dispersed in turbulent downward flow through a vertical channel at friction Reynolds numbers \(Re_\tau=235\) and 335. The working fluid is air laden with size-selected glass microspheres, having Stokes numbers \(St=O(10)\) and \(O(100)\) when based on the Kolmogorov and viscous time scales, respectively. Cases at solid volume fractions \(\phi_v=3\times 10^{-6}\) and \(5\times 10^{-5}\) are considered. In the more dilute regime, the particle concentration profile shows near-wall and centreline maxima compatible with a turbophoretic drift down the gradient of turbulence intensity; the particles travel at speed similar to that of the unladen flow except in the near-wall region; and their velocity fluctuations generally follow the unladen flow level over the channel core, exceeding it in the near-wall region. The denser regime presents substantial differences in all measured statistics: the near-wall concentration peak is much more pronounced, while the centreline maximum is absent; the mean particle velocity decreases over the logarithmic and buffer layers; and particle velocity fluctuations and deposition velocities are enhanced. An analysis of the spatial distributions of particle positions and velocities reveals different behaviours in the core and near-wall regions. In the channel core, dense clusters form which are somewhat elongated, tend to be preferentially aligned with the vertical/streamwise direction and travel faster than the less concentrated particles. In the near-wall region, the particles arrange in highly elongated streaks associated with negative streamwise velocity fluctuations, several channel heights in length and spaced by \(O(100)\) wall units, supporting the view that these are coupled to fluid low-speed streaks typical of wall turbulence. The particle velocity fields contain a significant component of random uncorrelated motion, more prominent for higher \(St\) and in the near-wall region.

MSC:

76T20 Suspensions
76F05 Isotropic turbulence; homogeneous turbulence

References:

[1] Aliseda, A.; Cartellier, A.; Hainaux, F.; Lasheras, J. C., Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence, J. Fluid Mech., 468, 77-105, (2002) · Zbl 1152.76303
[2] Baek, S. J.; Lee, S. J., A new two-frame particle tracking algorithm using match probability, Exp. Fluids, 22, 1, 23-32, (1996)
[3] Baker, L.; Frankel, A.; Mani, A.; Coletti, F., Coherent clusters of inertial particles in homogeneous turbulence, J. Fluid Mech., 833, 364-398, (2017) · Zbl 1419.76237
[4] Balachandar, S.; Eaton, J. K., Turbulent dispersed multiphase flow, Annu. Rev. Fluid Mech., 42, 111-133, (2010) · Zbl 1345.76106
[5] Balachandar, S.; Liu, K.; Lakhote, M., Self-induced velocity correction for improved drag estimation in Euler-Lagrange point-particle simulations, J. Comput. Phys., 376, 160-185, (2019) · Zbl 1416.76241
[6] Bendat, J. S. & Piersol, A. G.2011Random Data: Analysis and Measurement Procedures, vol. 729. Wiley. · Zbl 1187.62204
[7] Benson, M.; Tanaka, T.; Eaton, J. K., Effects of wall roughness on particle velocities in a turbulent channel flow, J. Fluids Engng, 127, 2, 250-256, (2005)
[8] Bernardini, M., Reynolds number scaling of inertial particle statistics in turbulent channel flows, J. Fluid Mech., 758, (2014)
[9] Bewley, G. P.; Saw, E.-W.; Bodenschatz, E., Observation of the sling effect, New J. Phys., 15, 8, (2013)
[10] Bosse, T.; Kleiser, L.; Meiburg, E., Small particles in homogeneous turbulence: settling velocity enhancement by two-way coupling, Phys. Fluids, 18, 2, (2006)
[11] Bragg, A. D.; Collins, L. R., New insights from comparing statistical theories for inertial particles in turbulence: I. Spatial distribution of particles, New J. Phys., 16, 5, (2014)
[12] Capecelatro, J.; Desjardins, O., An Euler-Lagrange strategy for simulating particle – laden flows, J. Comput. Phys., 238, 1-31, (2013) · Zbl 1286.76142
[13] Capecelatro, J.; Desjardins, O., Mass loading effects on turbulence modulation by particle clustering in dilute and moderately dilute channel flows, J. Fluids Engng, 137, 11, (2015)
[14] Capecelatro, J.; Desjardins, O.; Fox, R. O., Strongly coupled fluid – particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics, Phys. Fluids, 28, 3, (2016)
[15] Capecelatro, J.; Desjardins, O.; Fox, R. O., On the transition between turbulence regimes in particle – laden channel flows, J. Fluid Mech., 845, 499-519, (2018) · Zbl 1404.76110
[16] Capecelatro, J.; Pepiot, P.; Desjardins, O., Numerical characterization and modeling of particle clustering in wall-bounded vertical risers, Chem. Engng J., 245, 295-310, (2014)
[17] Capone, A.; Romano, G. P.; Soldati, A., Experimental investigation on interactions among fluid and rod-like particles in a turbulent pipe jet by means of particle image velocimetry, Exp. Fluids, 56, 1, (2015)
[18] Caporaloni, M.; Tampieri, F.; Trombetti, F.; Vittori, O., Transfer of particles in nonisotropic air turbulence, J. Atmos. Sci., 32, 3, 565-568, (1975)
[19] Caraman, N.; Borée, J.; Simonin, O., Effect of collisions on the dispersed phase fluctuation in a dilute tube flow: experimental and theoretical analysis, Phys. Fluids, 15, 12, 3602-3612, (2003) · Zbl 1186.76091
[20] Clauser, F. H., The turbulent boundary layer, Adv. Appl. Mech., 4, 1-51, (1956)
[21] Clift, R.; Grace, J. R.; Weber, M. E., Bubbles, Drops, and Particles, (2005), Courier Corporation
[22] Discetti, S.; Coletti, F., Volumetric velocimetry for fluid flows, Meas. Sci. Technol., 29, 4, (2018)
[23] Dritselis, C. D.; Vlachos, N. S., Numerical investigation of momentum exchange between particles and coherent structures in low re turbulent channel flow, Phys. Fluids, 23, 2, (2011) · Zbl 1219.80037
[24] Eaton, J. K., Two-way coupled turbulence simulations of gas – particle flows using point-particle tracking, Intl J. Multiphase Flow, 35, 9, 792-800, (2009)
[25] Eaton, J. K.; Fessler, J. R., Preferential concentration of particles by turbulence, Intl J. Multiphase Flow, 20, 169-209, (1994) · Zbl 1134.76536
[26] Elghobashi, S., On predicting particle – laden turbulent flows, Appl. Sci. Res., 52, 4, 309-329, (1994)
[27] Ferenc, J.-S.; Néda, Z., On the size distribution of Poisson Voronoi cells, Physica A, 385, 2, 518-526, (2007)
[28] Fessler, J. R.; Kulick, J. D.; Eaton, J. K., Preferential concentration of heavy particles in a turbulent channel flow, Phys. Fluids, 6, 11, 3742-3749, (1994)
[29] Fevrier, P.; Simonin, O.; Squires, K. D., Partitioning of particle velocities in gas – solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study, J. Fluid Mech., 533, 1-46, (2005) · Zbl 1101.76025
[30] Fouxon, I.; Schmidt, L.; Ditlevsen, P.; Van Reeuwijk, M.; Holzner, M., Inhomogeneous growth of fluctuations of concentration of inertial particles in channel turbulence, Phys. Rev. Fluids, 3, 6, (2018)
[31] Frankel, A.; Pouransari, H.; Coletti, F.; Mani, A., Settling of heated particles in homogeneous turbulence, J. Fluid Mech., 792, 869-893, (2016) · Zbl 1381.76086
[32] Garcia-Villalba, M.; Kidanemariam, A. G.; Uhlmann, M., DNS of vertical plane channel flow with finite-size particles: Voronoi analysis, acceleration statistics and particle-conditioned averaging, Intl J. Multiphase Flow, 46, 54-74, (2012)
[33] Gondret, P.; Lance, M.; Petit, L., Bouncing motion of spherical particles in fluids, Phys. Fluids, 14, 2, 643-652, (2002) · Zbl 1184.76187
[34] Goto, S.; Vassilicos, J. C., Sweep-stick mechanism of heavy particle clustering in fluid turbulence, Phys. Rev. Lett., 100, 5, (2008)
[35] Gualtieri, P.; Picano, F.; Casciola, C. M., Anisotropic clustering of inertial particles in homogeneous shear flow, J. Fluid Mech., 629, 25-39, (2009) · Zbl 1181.76081
[36] Gualtieri, P.; Picano, F.; Sardina, G.; Casciola, C. M., Exact regularized point particle method for multiphase flows in the two-way coupling regime, J. Fluid Mech., 773, 520-561, (2015) · Zbl 1331.76123
[37] Guha, A., Transport and deposition of particles in turbulent and laminar flow, Annu. Rev. Fluid Mech., 40, 311-341, (2008) · Zbl 1136.76050
[38] Gustavsson, K.; Mehlig, B., Statistical models for spatial patterns of heavy particles in turbulence, Adv. Phys., 65, 1, 1-57, (2016)
[39] Hadinoto, K.; Jones, E. N.; Yurteri, C.; Curtis, J. S., Reynolds number dependence of gas-phase turbulence in gas – particle flows, Intl J. Multiphase Flow, 31, 4, 416-434, (2005) · Zbl 1135.76431
[40] Hardalupas, Y.; Taylor, A. M. K. P.; Whitelaw, J. H., Velocity and particle-flux characteristics of turbulent particle – laden jets, Proc. R. Soc. Lond. A, 426, 1870, 31-78, (1989)
[41] Hassan, Y. A.; Blanchat, T. K.; Seeley, C. H. Jr; Canaan, R. E., Simultaneous velocity measurements of both components of a two-phase flow using particle image velocimetry, Intl J. Multiphase Flow, 18, 3, 371-395, (1992) · Zbl 1144.76388
[42] Holtzer, G. L.; Collins, L. R., Relationship between the intrinsic radial distribution function for an isotropic field of particles and lower-dimensional measurements, J. Fluid Mech., 459, 93-102, (2002) · Zbl 0991.76513
[43] Horwitz, J. A. K.; Mani, A., Accurate calculation of Stokes drag for point-particle tracking in two-way coupled flows, J. Comput. Phys., 318, 85-109, (2016) · Zbl 1349.76477
[44] Hrenya, C. M.; Sinclair, J. L., Effects of particle-phase turbulence in gas – solid flows, AIChE J., 43, 4, 853-869, (1997)
[45] Ireland, P. J.; Desjardins, O., Improving particle drag predictions in Euler-Lagrange simulations with two-way coupling, J. Comput. Phys., 338, 405-430, (2017) · Zbl 1415.76498
[46] De Jong, J.; Salazar, J. P. L. C.; Woodward, S. H.; Collins, L. R.; Meng, H., Measurement of inertial particle clustering and relative velocity statistics in isotropic turbulence using holographic imaging, Intl J. Multiphase Flow, 36, 4, 324-332, (2010)
[47] Joseph, G. G.; Zenit, R.; Hunt, M. L.; Rosenwinkel, A. M., Particle – wall collisions in a viscous fluid, J. Fluid Mech., 433, 329-346, (2001) · Zbl 0968.76505
[48] Kaftori, D.; Hetsroni, G.; Banerjee, S., Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment, Phys. Fluids, 7, 5, 1095-1106, (1995)
[49] Kaftori, D.; Hetsroni, G.; Banerjee, S., Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles, Phys. Fluids, 7, 5, 1107-1121, (1995)
[50] Khalitov, D. A.; Longmire, E. K., Simultaneous two-phase PIV by two-parameter phase discrimination, Exp. Fluids, 32, 2, 252-268, (2002)
[51] Khalitov, D. A. & Longmire, E. K.2003Effect of particle size on velocity correlations in turbulent channel flow. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, pp. 445-453. American Society of Mechanical Engineers.
[52] Kiger, K. T.; Pan, C., PIV technique for the simultaneous measurement of dilute two-phase flows, J. Fluids Engng, 122, 4, 811-818, (2000)
[53] Kiger, K. T.; Pan, C., Suspension and turbulence modification effects of solid particulates on a horizontal turbulent channel flow, J. Turbul., 3, 19, 1-17, (2002)
[54] Kim, J.; Moin, P.; Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177, 133-166, (1987) · Zbl 0616.76071
[55] Kleinstreuer, C.; Zhang, Z., Airflow and particle transport in the human respiratory system, Annu. Rev. Fluid Mech., 42, 301-334, (2010) · Zbl 1213.76264
[56] Knowles, P. L.; Kiger, K. T., Quantification of dispersed phase concentration using light sheet imaging methods, Exp. Fluids, 52, 3, 697-708, (2012)
[57] Kuerten, J. G. M.; Vreman, A. W., Effect of droplet interaction on droplet-laden turbulent channel flow, Phys. Fluids, 27, 5, (2015)
[58] Kulick, J. D.; Fessler, J. R.; Eaton, J. K., Particle response and turbulence modification in fully developed channel flow, J. Fluid Mech., 277, 109-134, (1994)
[59] Kussin, J.; Sommerfeld, M., Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness, Exp. Fluids, 33, 1, 143-159, (2002)
[60] Li, D.; Luo, K.; Fan, J., Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer, J. Fluid Mech., 802, 359-394, (2016) · Zbl 1462.76199
[61] Li, J.; Wang, H.; Liu, Z.; Chen, S.; Zheng, C., An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas – particle channel flow, Exp. Fluids, 53, 5, 1385-1403, (2012)
[62] Li, Y.; Mclaughlin, J. B.; Kontomaris, K.; Portela, L., Numerical simulation of particle – laden turbulent channel flow, Phys. Fluids, 13, 10, 2957-2967, (2001) · Zbl 1184.76325
[63] Lin, Z.-W.; Shao, X.-M.; Yu, Z.-S.; Wang, L.-P., Effects of finite-size heavy particles on the turbulent flows in a square duct, Hydrodynamics, 29, 2, 272-282, (2017)
[64] Liu, B. Y. H.; Agarwal, J. K., Experimental observation of aerosol deposition in turbulent flow, Aerosol Sci., 5, 2, 145-155, (1974)
[65] Marchioli, C.; Soldati, A., Mechanisms for particle transfer and segregation in a turbulent boundary layer, J. Fluid Mech., 468, 283-315, (2002) · Zbl 1152.76401
[66] Marchioli, C.; Soldati, A.; Kuerten, J. G. M.; Arcen, B.; Taniere, A.; Goldensoph, G.; Squires, K. D.; Cargnelutti, M. F.; Portela, L. M., Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test, Intl J. Multiphase Flow, 34, 9, 879-893, (2008)
[67] Masi, E.; Simonin, O.; Riber, E.; Sierra, P.; Gicquel, L. Y. M., Development of an algebraic-closure-based moment method for unsteady Eulerian simulations of particle – laden turbulent flows in very dilute regime, Intl J. Multiphase Flow, 58, 257-278, (2014)
[68] Maxey, M. R., The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields, J. Fluid Mech., 174, 441-465, (1987) · Zbl 0617.76058
[69] Mclaughlin, J. B., Aerosol particle deposition in numerically simulated channel flow, Phys. Fluids A, 1, 7, 1211-1224, (1989)
[70] Mehrabadi, M.; Horwitz, J. A. K.; Subramaniam, S.; Mani, A., A direct comparison of particle-resolved and point-particle methods in decaying turbulence, J. Fluid Mech., 850, 336-369, (2018) · Zbl 1415.76260
[71] Meneguz, E.; Reeks, M. W., Statistical properties of particle segregation in homogeneous isotropic turbulence, J. Fluid Mech., 686, 338-351, (2011) · Zbl 1241.76297
[72] Monchaux, R.; Bourgoin, M.; Cartellier, A., Preferential concentration of heavy particles: a Voronoï analysis, Phys. Fluids, 22, 10, (2010)
[73] Monchaux, R.; Bourgoin, M.; Cartellier, A., Analyzing preferential concentration and clustering of inertial particles in turbulence, Intl J. Multiphase Flow, 40, 1-18, (2012)
[74] Moser, R. D.; Kim, J.; Mansour, N. N., Direct numerical simulation of turbulent channel flow up to Re_𝜏 = 590, Phys. Fluids, 11, 4, 943-945, (1999) · Zbl 1147.76463
[75] Nasr, H.; Ahmadi, G.; Mclaughlin, J. B., A DNS study of effects of particle – particle collisions and two-way coupling on particle deposition and phasic fluctuations, J. Fluid Mech., 640, 507-536, (2009) · Zbl 1183.76780
[76] Nicolai, C.; Jacob, B.; Piva, R., On the spatial distribution of small heavy particles in homogeneous shear turbulence, Phys. Fluids, 25, 8, (2013)
[77] Nilsen, C.; Andersson, H. I.; Zhao, L., A Voronoï analysis of preferential concentration in a vertical channel flow, Phys. Fluids, 25, 11, (2013)
[78] Niño, Y.; Garcia, M. H., Experiments on particle – turbulence interactions in the near-wall region of an open channel flow: implications for sediment transport, J. Fluid Mech., 326, 285-319, (1996)
[79] Ohmi, K.; Li, H.-Y., Particle-tracking velocimetry with new algorithms, Meas. Sci. Technol., 11, 6, 603-616, (2000)
[80] Oliveira, J. L. G.; Van Der Geld, C. W. M.; Kuerten, J. G. M., Concentration and velocity statistics of inertial particles in upward and downward pipe flow, J. Fluid Mech., 822, 640-663, (2017) · Zbl 1383.76501
[81] Pan, Y.; Banerjee, S., Numerical simulation of particle interactions with wall turbulence, Phys. Fluids, 8, 10, 2733-2755, (1996)
[82] Paris, A. D.2001 Turbulence attenuation in a particle – laden channel flow. PhD thesis, Stanford University, Stanford, CA.
[83] Petersen, A. J.; Baker, L.; Coletti, F., Experimental study of inertial particles clustering and settling in homogeneous turbulence, J. Fluid Mech., 864, 925-970, (2019)
[84] Picano, F.; Breugem, W.-P.; Brandt, L., Turbulent channel flow of dense suspensions of neutrally buoyant spheres, J. Fluid Mech., 764, 463-487, (2015)
[85] Pope, S. B., Turbulent Flows, (2000), Cambridge University Press · Zbl 0966.76002
[86] Rabencov, B.; Arca, J.; Van Hout, R., Measurement of polystyrene beads suspended in a turbulent square channel flow: spatial distributions of velocity and number density, Intl J. Multiphase Flow, 62, 110-122, (2014)
[87] Reeks, M. W., The transport of discrete particles in inhomogeneous turbulence, Aerosol Sci., 14, 6, 729-739, (1983)
[88] Reeks, M. W., Transport, mixing and agglomeration of particles in turbulent flows, Flow Turbul. Combust., 92, 3-25, (2014)
[89] Richter, D. H.; Sullivan, P. P., Momentum transfer in a turbulent, particle – laden Couette flow, Phys. Fluids, 25, 5, (2013)
[90] Richter, D. H.; Sullivan, P. P., Modification of near-wall coherent structures by inertial particles, Phys. Fluids, 26, 10, (2014)
[91] Righetti, M.; Romano, G. P., Particle – fluid interactions in a plane near-wall turbulent flow, J. Fluid Mech., 505, 93-121, (2004) · Zbl 1058.76517
[92] Robinson, S. K., Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., 23, 1, 601-639, (1991)
[93] Rouson, D. W. I.; Eaton, J. K., On the preferential concentration of solid particles in turbulent channel flow, J. Fluid Mech., 428, 149-169, (2001) · Zbl 0967.76039
[94] Sahu, S.; Hardalupas, Y.; Taylor, A. M. K. P., Droplet – turbulence interaction in a confined polydispersed spray: effect of droplet size and flow length scales on spatial droplet – gas velocity correlations, J. Fluid Mech., 741, 98-138, (2014)
[95] Sahu, S.; Hardalupas, Y.; Taylor, A. M. K. P., Droplet – turbulence interaction in a confined polydispersed spray: effect of turbulence on droplet dispersion, J. Fluid Mech., 794, 267-309, (2016) · Zbl 1462.76189
[96] Salazar, J. P. L. C.; De Jong, J.; Cao, L.; Woodward, S. H.; Meng, H.; Collins, L. R., Experimental and numerical investigation of inertial particle clustering in isotropic turbulence, J. Fluid Mech., 600, 245-256, (2008) · Zbl 1151.76346
[97] Sardina, G.; Schlatter, P.; Brandt, L.; Picano, F.; Casciola, C. M., Wall accumulation and spatial localization in particle – laden wall flows, J. Fluid Mech., 699, 50-78, (2012) · Zbl 1248.76142
[98] Sardina, G.; Schlatter, P.; Picano, F.; Casciola, C. M.; Brandt, L.; Henningson, D. S., Self-similar transport of inertial particles in a turbulent boundary layer, J. Fluid Mech., 706, 584-596, (2012) · Zbl 1275.76142
[99] Schneiders, L.; Meinke, M.; Schröder, W., Direct particle – fluid simulation of Kolmogorov-length-scale size particles in decaying isotropic turbulence, J. Fluid Mech., 819, 188-227, (2017) · Zbl 1383.76186
[100] Shokri, R.; Ghaemi, S.; Nobes, D. S.; Sanders, R. S., Investigation of particle – laden turbulent pipe flow at high-Reynolds-number using particle image/tracking velocimetry (PIV/PTV), Intl J. Multiphase Flow, 89, 136-149, (2017)
[101] Soldati, A.; Marchioli, C., Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study, Intl J. Multiphase Flow, 35, 9, 827-839, (2009)
[102] Squires, K. D.; Eaton, J. K., Preferential concentration of particles by turbulence, Phys. Fluids A, 3, 5, 1169-1178, (1991)
[103] Sumbekova, S.; Cartellier, A.; Aliseda, A.; Bourgoin, M., Preferential concentration of inertial sub-Kolmogorov particles: the roles of mass loading of particles, Stokes numbers, and Reynolds numbers, Phys. Rev. Fluids, 2, 2, (2017)
[104] Sundaram, S.; Collins, L. R., Collision statistics in an isotropic particle – laden turbulent suspension. Part 1. Direct numerical simulations, J. Fluid Mech., 335, 75-109, (1997) · Zbl 0901.76089
[105] Sundaram, S.; Collins, L. R., A numerical study of the modulation of isotropic turbulence by suspended particles, J. Fluid Mech., 379, 105-143, (1999) · Zbl 0938.76045
[106] Taniere, A.; Oesterle, B.; Monnier, J. C., On the behaviour of solid particles in a horizontal boundary layer with turbulence and saltation effects, Exp. Fluids, 23, 6, 463-471, (1997)
[107] Vance, M. W.; Squires, K. D.; Simonin, O., Properties of the particle velocity field in gas – solid turbulent channel flow, Phys. Fluids, 18, 6, (2006)
[108] Varaksin, A. Y.; Polezhaev, Y. V.; Polyakov, A. F., Effect of particle concentration on fluctuating velocity of the disperse phase for turbulent pipe flow, Intl J. Heat Fluid Flow, 21, 5, 562-567, (2000)
[109] Vreman, A. W., Turbulence characteristics of particle – laden pipe flow, J. Fluid Mech., 584, 235-279, (2007) · Zbl 1175.76070
[110] Vreman, A. W., Turbulence attenuation in particle – laden flow in smooth and rough channels, J. Fluid Mech., 773, 103-136, (2015)
[111] Wang, G.; Abbas, M.; Climent, É., Modulation of large-scale structures by neutrally buoyant and inertial finite-size particles in turbulent Couette flow, Phys. Rev. Fluids, 2, 8, (2017)
[112] Wang, G.; Richter, D., Modulation of the turbulence regeneration cycle by inertial particles in planar Couette flow, J. Fluid Mech., 861, 901-929, (2019) · Zbl 1415.76305
[113] Wang, L.-P.; Maxey, M. R., Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence, J. Fluid Mech., 256, 27-68, (1993)
[114] Wei, T.; Schmidt, R.; Mcmurtry, P., Comment on the Clauser chart method for determining the friction velocity, Exp. Fluids, 38, 5, 695-699, (2005)
[115] Wilkinson, M.; Mehlig, B., Caustics in turbulent aerosols, Europhys. Lett., 71, 2, 186-192, (2005)
[116] Wood, A. M.; Hwang, W.; Eaton, J. K., Preferential concentration of particles in homogeneous and isotropic turbulence, Intl J. Multiphase Flow, 31, 10-11, 1220-1230, (2005) · Zbl 1388.76396
[117] Wu, Y.; Wang, H.; Liu, Z.; Li, J.; Zhang, L.; Zheng, C., Experimental investigation on turbulence modification in a horizontal channel flow at relatively low mass loading, Acta Mech. Sin., 22, 2, 99-108, (2006)
[118] Yang, T. S.; Shy, S. S., Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements, J. Fluid Mech., 526, 171-216, (2005) · Zbl 1065.76009
[119] Young, J.; Leeming, A., A theory of particle deposition in turbulent pipe flow, J. Fluid Mech., 340, 129-159, (1997) · Zbl 0890.76085
[120] Zamansky, R.; Coletti, F.; Massot, M.; Mani, A., Turbulent thermal convection driven by heated inertial particles, J. Fluid Mech., 809, 390-437, (2016) · Zbl 1383.76517
[121] Zhang, H.; Ahmadi, G., Aerosol particle transport and deposition in vertical and horizontal turbulent duct flows, J. Fluid Mech., 406, 55-80, (2000) · Zbl 0962.76037
[122] Zhao, L. H.; Andersson, H. I.; Gillissen, J. J. J., Turbulence modulation and drag reduction by spherical particles, Phys. Fluids, 22, 8, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.