×

Intrinsic Riemannian functional data analysis for sparse longitudinal observations. (English) Zbl 1539.62355

Summary: A new framework is developed to intrinsically analyze sparsely observed Riemannian functional data. It features four innovative components: a frame-independent covariance function, a smooth vector bundle termed covariance vector bundle, a parallel transport and a smooth bundle metric on the covariance vector bundle. The introduced intrinsic covariance function links estimation of covariance structure to smoothing problems that involve raw covariance observations derived from sparsely observed Riemannian functional data, while the covariance vector bundle provides a rigorous mathematical foundation for formulating such smoothing problems. The parallel transport and the bundle metric together make it possible to measure fidelity of fit to the covariance function. They also play a critical role in quantifying the quality of estimators for the covariance function. As an illustration, based on the proposed framework, we develop a local linear smoothing estimator for the covariance function, analyze its theoretical properties and provide numerical demonstration via simulated and real data sets. The intrinsic feature of the framework makes it applicable to not only Euclidean submanifolds but also manifolds without a canonical ambient space.

MSC:

62R10 Functional data analysis
62R30 Statistics on manifolds

Software:

fda (R)

References:

[1] Afsari, B. (2011). Riemannian \[{L^p}\] center of mass: Existence, uniqueness, and convexity. Proc. Amer. Math. Soc. 139 655-673. · Zbl 1220.53040 · doi:10.1090/S0002-9939-2010-10541-5
[2] ANEIROS, G., CAO, R., FRAIMAN, R., GENEST, C. and VIEU, P. (2019). Recent advances in functional data analysis and high-dimensional statistics. J. Multivariate Anal. 170 3-9. · Zbl 1415.62043 · doi:10.1016/j.jmva.2018.11.007
[3] Arsigny, V., Fillard, P., Pennec, X. and Ayache, N. (2006). Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56 411-421.
[4] ARSIGNY, V., FILLARD, P., PENNEC, X. and AYACHE, N. (2006/07). Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29 328-347. · Zbl 1144.47015 · doi:10.1137/050637996
[5] Bhattacharya, R. and Patrangenaru, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds. I. Ann. Statist. 31 1-29. · Zbl 1020.62026 · doi:10.1214/aos/1046294456
[6] BHATTACHARYA, R. and PATRANGENARU, V. (2005). Large sample theory of intrinsic and extrinsic sample means on manifolds. II. Ann. Statist. 33 1225-1259. · Zbl 1072.62033 · doi:10.1214/009053605000000093
[7] CAI, T. and YUAN, M. (2010). Nonparametric covariance function estimation for functional and longitudinal data Technical Report Univ. Pennsylvania.
[8] CAI, T. T. and YUAN, M. (2011). Optimal estimation of the mean function based on discretely sampled functional data: Phase transition. Ann. Statist. 39 2330-2355. · Zbl 1231.62040
[9] Cornea, E., Zhu, H., Kim, P. and Ibrahim, J. G. (2017). Regression models on Riemannian symmetric spaces. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 463-482. · Zbl 1414.62177 · doi:10.1111/rssb.12169
[10] DAI, X., LIN, Z. and MÜLLER, H.-G. (2021). Modeling sparse longitudinal data on Riemannian manifolds. Biometrics 77 1328-1341. · Zbl 1520.62173 · doi:10.1111/biom.13385
[11] Dai, X. and Müller, H.-G. (2018). Principal component analysis for functional data on Riemannian manifolds and spheres. Ann. Statist. 46 3334-3361. · Zbl 1454.62553 · doi:10.1214/17-AOS1660
[12] DELAIGLE, A., HALL, P., HUANG, W. and KNEIP, A. (2021). Estimating the covariance of fragmented and other related types of functional data. J. Amer. Statist. Assoc. 116 1383-1401. · Zbl 1510.62488 · doi:10.1080/01621459.2020.1723597
[13] DESCARY, M.-H. and PANARETOS, V. M. (2019). Recovering covariance from functional fragments. Biometrika 106 145-160. · Zbl 1506.62543 · doi:10.1093/biomet/asy055
[14] Dryden, I. L., Koloydenko, A. and Zhou, D. (2009). Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Ann. Appl. Stat. 3 1102-1123. · Zbl 1196.62063 · doi:10.1214/09-AOAS249
[15] DUBEY, P. and MÜLLER, H.-G. (2020). Functional models for time-varying random objects. J. R. Stat. Soc. Ser. B. Stat. Methodol. 82 275-327. · Zbl 07554756
[16] Faraway, J. J. (2014). Regression for non-Euclidean data using distance matrices. J. Appl. Stat. 41 2342-2357. · Zbl 1514.62555 · doi:10.1080/02664763.2014.909794
[17] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer Series in Statistics. Springer, New York. · Zbl 1119.62046
[18] FILLARD, P., ARSIGNY, V., AYACHE, N. and PENNEC, X. (2005). A Riemannian framework for the processing of tensor-valued images. In Deep Structure, Singularities, and Computer Vision (O. Fogh Olsen, L. Florack and A. Kuijper, eds.) 112-123. Springer, Heidelberg.
[19] Fletcher, P. T. (2013). Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105 171-185. · Zbl 1304.62092 · doi:10.1007/s11263-012-0591-y
[20] Fletcher, T. and Joshi, S. (2007). Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87 250-262. · Zbl 1186.94126
[21] HALL, P., MÜLLER, H.-G. and WANG, J.-L. (2006). Properties of principal component methods for functional and longitudinal data analysis. Ann. Statist. 34 1493-1517. · Zbl 1113.62073 · doi:10.1214/009053606000000272
[22] Hein, M. (2009). Robust nonparametric regression with metric-space valued output. In Advances in Neural Information Processing Systems 718-726.
[23] Hinkle, J., Fletcher, P. T. and Joshi, S. (2014). Intrinsic polynomials for regression on Riemannian manifolds. J. Math. Imaging Vision 50 32-52. · Zbl 1310.53038 · doi:10.1007/s10851-013-0489-5
[24] HSING, T. and EUBANK, R. (2015). Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. Wiley Series in Probability and Statistics. Wiley, Chichester. · Zbl 1338.62009 · doi:10.1002/9781118762547
[25] KOKOSZKA, P. and REIMHERR, M. (2017). Introduction to Functional Data Analysis. Texts in Statistical Science Series. CRC Press, Boca Raton, FL. · Zbl 1411.62004
[26] LEE, J. M. (1997). Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in Mathematics 176. Springer, New York. · Zbl 0905.53001 · doi:10.1007/b98852
[27] LENGLET, C., ROUSSON, M., DERICHE, R. and FAUGERAS, O. (2006). Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing. J. Math. Imaging Vision 25 423-444. · Zbl 1478.62387 · doi:10.1007/s10851-006-6897-z
[28] LI, Y. and HSING, T. (2010). Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. Ann. Statist. 38 3321-3351. · Zbl 1204.62067 · doi:10.1214/10-AOS813
[29] Lin, Z. (2019). Riemannian geometry of symmetric positive definite matrices via Cholesky decomposition. SIAM J. Matrix Anal. Appl. 40 1353-1370. · Zbl 07141455 · doi:10.1137/18M1221084
[30] LIN, Z. and MÜLLER, H.-G. (2021). Total variation regularized Fréchet regression for metric-space valued data. Ann. Statist. 49 3510-3533. · Zbl 1486.62326 · doi:10.1214/21-aos2095
[31] LIN, Z., WANG, J.-L. and ZHONG, Q. (2021). Basis expansions for functional snippets. Biometrika 108 709-726. · Zbl 07459724 · doi:10.1093/biomet/asaa088
[32] Lin, Z. and Yao, F. (2019). Intrinsic Riemannian functional data analysis. Ann. Statist. 47 3533-3577. · Zbl 1435.62264 · doi:10.1214/18-AOS1787
[33] LINDBERG, O., WALTERFANG, M., LOOI, J. C. L., MALYKHIN, N., ÖSTBERG, P., ZANDBELT, B., STYNER, M., VELAKOULIS, D., ÖRNDAHL, E. et al. (2012). Shape analysis of the hippocampus in Alzheimer’s disease and subtypes of frontotemporal lobar degeneration. J. Alzheimer’s Dis. 30 355-365.
[34] Moakher, M. (2005). A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26 735-747. · Zbl 1079.47021 · doi:10.1137/S0895479803436937
[35] Pelletier, B. (2006). Non-parametric regression estimation on closed Riemannian manifolds. J. Nonparametr. Stat. 18 57-67. · Zbl 1088.62053 · doi:10.1080/10485250500504828
[36] PENNEC, X. (2019). Curvature effects on the empirical mean in Riemannian and affine manifolds: A non-asymptotic high concentration expansion in the small-sample regime. Available at arXiv:arxiv.org/1906.07418.
[37] PENNEC, X. (2020). Manifold-valued image processing with SPD matrices. In Riemannian Geometric Statistics in Medical Image Analysis 75-134. Elsevier, London. · Zbl 1453.62560 · doi:10.1016/B978-0-12-814725-2.00010-8
[38] Pennec, X., Fillard, P. and Ayache, N. (2006). A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66 41-66. · Zbl 1287.53031
[39] Petersen, A. and Müller, H.-G. (2019). Fréchet regression for random objects with Euclidean predictors. Ann. Statist. 47 691-719. · Zbl 1417.62091 · doi:10.1214/17-AOS1624
[40] Prévôt, C. and Röckner, M. (2007). A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Math. 1905. Springer, Berlin. · Zbl 1123.60001
[41] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. Springer Series in Statistics. Springer, New York. · Zbl 1079.62006
[42] SCHÖTZ, C. (2019). Convergence rates for the generalized Fréchet mean via the quadruple inequality. Electron. J. Stat. 13 4280-4345. · Zbl 1432.62080 · doi:10.1214/19-EJS1618
[43] SHAO, L., LIN, Z. and YAO, F. (2022). Supplement to “Intrinsic Riemannian functional data analysis for sparse longitudinal observations.” https://doi.org/10.1214/22-AOS2172SUPP
[44] Shi, X., Styner, M., Lieberman, J., Ibrahim, J. G., Lin, W. and Zhu, H. (2009). Intrinsic regression models for manifold-valued data. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 12 192-199.
[45] Steinke, F., Hein, M. and Schölkopf, B. (2010). Nonparametric regression between general Riemannian manifolds. SIAM J. Imaging Sci. 3 527-563. · Zbl 1195.41011 · doi:10.1137/080744189
[46] Sturm, K.-T. (2003). Probability measures on metric spaces of nonpositive curvature. In Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002). Contemp. Math. 338 357-390. Amer. Math. Soc., Providence, RI. · Zbl 1040.60002 · doi:10.1090/conm/338/06080
[47] SU, J., KURTEK, S., KLASSEN, E. and SRIVASTAVA, A. (2014). Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance. Ann. Appl. Stat. 8 530-552. · Zbl 1454.62554 · doi:10.1214/13-AOAS701
[48] WANG, J.-L., CHIOU, J.-M. and MÜLLER, H.-G. (2016). Review of functional data analysis. Annu. Rev. Stat. Appl. 3 257-295.
[49] Yao, F., Müller, H.-G. and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100 577-590. · Zbl 1117.62451 · doi:10.1198/016214504000001745
[50] ZHANG, Z., KLASSEN, E. and SRIVASTAVA, A. (2018). Phase-amplitude separation and modeling of spherical trajectories. J. Comput. Graph. Statist. 27 85-97. · Zbl 07498969 · doi:10.1080/10618600.2017.1340892
[51] ZHANG, X. and WANG, J.-L. (2016). From sparse to dense functional data and beyond. Ann. Statist. 44 2281-2321. · Zbl 1349.62161 · doi:10.1214/16-AOS1446
[52] ZHANG, X. and WANG, J.-L. (2018). Optimal weighting schemes for longitudinal and functional data. Statist. Probab. Lett. 138 165-170. · Zbl 1463.62015 · doi:10.1016/j.spl.2018.03.007
[53] ZHU, H., CHEN, Y., IBRAHIM, J. G., LI, Y., HALL, C. and LIN, W. (2009). Intrinsic regression models for positive-definite matrices with applications to diffusion tensor imaging. J. Amer. Statist. Assoc. 104 1203-1212 · Zbl 1388.62198 · doi:10.1198/jasa.2009.tm08096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.