×

Qualitative properties for solutions to subcritical fourth order systems. (English) Zbl 1498.35238

Summary: We prove some qualitative properties for singular solutions to a class of strongly coupled system involving a Gross-Pitaevskii-type nonlinearity. Our main theorems are vectorial fourth order counterparts of the classical results due to J. Serrin [Acta Math. 111, 247–302 (1964; Zbl 0128.09101)], P.-L. Lions [J. Differ. Equations 38, 441–450 (1980; Zbl 0458.35033)], P. Aviles [Commun. Math. Phys. 108, No. 2, 177–192 (1987; Zbl 0617.35040)], and B. Gidas and J. Spruck [Commun. Pure Appl. Math. 34, 525–598 (1981; Zbl 0465.35003)]. On the technical level, we use the moving sphere method to classify the limit blow-up solutions to our system. Besides, applying asymptotic analysis, we show that these solutions are indeed the local models near the isolated singularity. We also introduce a new fourth order nonautonomous Pohozaev functional, whose monotonicity properties yield improvement for the asymptotics results due to R. Soranzo [Potential Anal. 6, No. 1, 57–85 (1997; Zbl 0877.35006)].

MSC:

35J48 Higher-order elliptic systems
35B44 Blow-up in context of PDEs

References:

[1] Ablowitz, M. J.; Prinari, B.; Trubatch, A. D., Discrete and Continuous Nonlinear Schrödinger Systems London Mathematical Society Lecture Note Series vol 302 (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1057.35058
[2] Andrade, J. H.; do Ó, J. M., Asymptotics for singular solutions to conformally invariant fourth order systems in the punctured ball (2020)
[3] Andrade, J. H.; do Ó, J. M., Qualitative properties for solutions to conformally invariant fourth order critical systems (2020)
[4] Aviles, P., Local behavior of solutions of some elliptic equations, Commun. Math. Phys., 108, 177-192 (1987) · Zbl 0617.35040 · doi:10.1007/bf01210610
[5] Bidaut-Véron, M-F; Ponce, A. C.; Véron, L., Boundary singularities of positive solutions of some nonlinear elliptic equations, C. R. Math., 344, 83-88 (2007) · Zbl 1241.35100 · doi:10.1016/j.crma.2006.11.027
[6] Bidaut-Véron, M-F; Ponce, A. C.; Véron, L., Isolated boundary singularities of semilinear elliptic equations, Calc. Var. Partial Differ. Equ., 40, 183-221 (2011) · Zbl 1215.35075 · doi:10.1007/s00526-010-0337-z
[7] Caffarelli, L. A.; Gidas, B.; Spruck, J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., 42, 271-297 (1989) · Zbl 0702.35085 · doi:10.1002/cpa.3160420304
[8] Caju, R.; do Ó, J. M.; Santos, A., Qualitative properties of positive singular solutions to nonlinear elliptic systems with critical growth, Ann. Inst. Henri Poincaré C, 36, 1575-1601 (2019) · Zbl 1425.35039 · doi:10.1016/j.anihpc.2019.02.001
[9] Caristi, G.; Mitidieri, E., Harnack inequality and applications to solutions of biharmonic equations, Partial Differential Equations and Functional Analysis Operator Theory: Advances and Applications vol 168, 1-26 (2006) · Zbl 1165.35350
[10] Chandrasekhar, S., An Introduction to the Study of Stellar Structure (1957), New York: Dover, New York · Zbl 0079.23901
[11] Chang, S-Y A.; Yang, P. C., On uniqueness of solutions of nth order differential equations in conformal geometry, Math. Res. Lett., 4, 91-102 (1997) · Zbl 0903.53027 · doi:10.4310/mrl.1997.v4.n1.a9
[12] Chang, S-Y A.; Yang, P. C., On a fourth order curvature invariant, Spectral Problems in Geometry and Arithmetic Contemporary Mathematics vol 237, 9-28 (1999), Providence, RI: Ameriacn Mathematical Society, Providence, RI · Zbl 0982.53035
[13] Chen, W.; Li, C., A necessary and sufficient condition for the Nirenberg problem, Commun. Pure Appl. Math., 48, 657-667 (1995) · Zbl 0830.35034 · doi:10.1002/cpa.3160480606
[14] Chen, W.; Li, C.; Ou, B., Classification of solutions for a system of integral equations, Commun. PDE, 30, 59-65 (2005) · Zbl 1073.45005 · doi:10.1081/pde-200044445
[15] Chen, W.; Li, C.; Ou, B., Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59, 330-343 (2006) · Zbl 1093.45001 · doi:10.1002/cpa.20116
[16] Dávila, J.; Dupaigne, L.; Wang, K.; Wei, J., A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258, 240-285 (2014) · Zbl 1317.35054 · doi:10.1016/j.aim.2014.02.034
[17] Druet, O.; Hebey, E., Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium, Anal. PDE, 2, 305-359 (2009) · Zbl 1208.58025 · doi:10.2140/apde.2009.2.305
[18] Druet, O.; Hebey, E.; Vétois, J., Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian, J. Funct. Anal., 258, 999-1059 (2010) · Zbl 1183.58018 · doi:10.1016/j.jfa.2009.07.004
[19] Emden, R., Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf kosmologische und meteorologische Probleme (1907), Leipzig: B.G. Teubner, Leipzig · JFM 38.0952.02
[20] Fleming, W. H., On the oriented Plateau problem, Rend. Circ. Mat. Palermo, 11, 69-90 (1962) · Zbl 0107.31304 · doi:10.1007/bf02849427
[21] Fowler, R. H., Further studies on Emden’s and similar differential equations, Q. J. Math., os-2, 259-288 (1931) · Zbl 0003.23502 · doi:10.1093/qmath/os-2.1.259
[22] Frank, R. L.; König, T., Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent, Anal. PDE, 12, 1101-1113 (2019) · Zbl 1421.35150 · doi:10.2140/apde.2019.12.1101
[23] Gazzola, F.; Grunau, H-C, Radial entire solutions for supercritical biharmonic equations, Math. Ann., 334, 905-936 (2006) · Zbl 1152.35034 · doi:10.1007/s00208-005-0748-x
[24] Ghergu, M.; Kim, S.; Shahgholian, H., Isolated singularities for semilinear elliptic systems with power-law nonlinearity, Anal. PDE, 13, 701-739 (2020) · Zbl 1455.35102 · doi:10.2140/apde.2020.13.701
[25] Gidas, B.; Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34, 525-598 (1981) · Zbl 0465.35003 · doi:10.1002/cpa.3160340406
[26] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (Classics in Mathematics) (2001), Berlin: Springer, Berlin
[27] del Mar González, M., Classification of singularities for a subcritical fully nonlinear problem, Pac. J. Math., 226, 83-102 (2006) · Zbl 1192.35050 · doi:10.2140/pjm.2006.226.83
[28] Guo, Z.; Huang, X.; Wang, L.; Wei, J., On Delaunay solutions of a biharmonic elliptic equation with critical exponent, J. Anal. Math., 140, 371-394 (2020) · Zbl 1437.35390 · doi:10.1007/s11854-020-0096-5
[29] Guo, Z.; Wei, J., Qualitative properties of entire radial solutions for a biharmonic equation with supercritical nonlinearity, Proc. Am. Math. Soc., 138, 3957-3964 (2010) · Zbl 1203.35105 · doi:10.1090/s0002-9939-10-10374-8
[30] Guo, Z.; Wei, J.; Zhou, F., Singular radial entire solutions and weak solutions with prescribed singular set for a biharmonic equation, J. Differ. Equ., 263, 1188-1224 (2017) · Zbl 1386.31005 · doi:10.1016/j.jde.2017.03.019
[31] Han, Z-C; Li, Y.; Teixeira, E. V., Asymptotic behavior of solutions to the σ_k-Yamabe equation near isolated singularities, Invent. Math., 182, 635-684 (2010) · Zbl 1211.53064 · doi:10.1007/s00222-010-0274-7
[32] Hang, F.; Yang, P. C., Lectures on the fourth-order Q-curvature equation, Geometric Analysis Around Scalar Curvatures Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore vol 31, 1-33 (2016), Hackensack, NJ: World Scientific Publishing, Hackensack, NJ · Zbl 1353.53001
[33] Hang, F.; Yang, P. C., Q-curvature on a class of manifolds with dimension at least 5, Commun. Pure Appl. Math., 69, 1452-1491 (2016) · Zbl 1346.53037 · doi:10.1002/cpa.21623
[34] Jin, Q.; Li, Y.; Xu, H., Symmetry and asymmetry: the method of moving spheres, Adv. Differ. Equ., 13, 601-640 (2008) · Zbl 1201.35099
[35] Jin, T.; Li, Y.; Xiong, J., The Nirenberg problem and its generalizations: a unified approach, Math. Ann., 369, 109-151 (2017) · Zbl 1384.53039 · doi:10.1007/s00208-016-1477-z
[36] Jin, T.; Xiong, J., Asymptotic symmetry and local behavior of solutions of higher order conformally invariant equations with isolated singularities, Ann. Inst. Henri Poincaré C, 38, 1167-1216 (2020) · Zbl 1465.35396 · doi:10.1016/j.anihpc.2020.10.005
[37] Korevaar, N.; Mazzeo, R.; Pacard, F.; Schoen, R., Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math., 135, 233-272 (1999) · Zbl 0958.53032 · doi:10.1007/s002220050285
[38] Lane, H. J., On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment, Am. J. Sci., s2-50, 57-74 (1870) · doi:10.2475/ajs.s2-50.148.57
[39] Li, Y., Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc., 6, 153-180 (2004) · Zbl 1075.45006 · doi:10.4171/jems/6
[40] Li, Y., Conformally invariant fully nonlinear elliptic equations and isolated singularities, J. Funct. Anal., 233, 380-425 (2006) · Zbl 1293.35112 · doi:10.1016/j.jfa.2005.08.009
[41] Li, Y.; Bao, J., Liouville theorem and isolated singularity of fractional Laplacian system with critical exponents, Nonlinear Anal., 191 (2020) · Zbl 1430.35040 · doi:10.1016/j.na.2019.111636
[42] Li, Y.; Bao, J., Semilinear elliptic system with boundary singularity, Discrete Contin. Dyn. Syst., 40, 2189-2212 (2020) · Zbl 1436.35199 · doi:10.3934/dcds.2020111
[43] Li, Y.; Zhang, L., Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math., 90, 27-87 (2003) · Zbl 1173.35477 · doi:10.1007/bf02786551
[44] Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118, 349-374 (1983) · Zbl 0527.42011 · doi:10.2307/2007032
[45] Lin, C-S, A classification of solutions of a conformally invariant fourth order equation in R^n, Comment. Math. Helvetici, 73, 206-231 (1998) · Zbl 0933.35057 · doi:10.1007/s000140050052
[46] Lions, P. L., Isolated singularities in semilinear problems, J. Differ. Equ., 38, 441-450 (1980) · Zbl 0458.35033 · doi:10.1016/0022-0396(80)90018-2
[47] Lo, E.; Mei, C. C., A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation, J. Fluid Mech., 150, 395-416 (1985) · Zbl 0603.76014 · doi:10.1017/s0022112085000180
[48] Martinazzi, L., Classification of solutions to the higher order Liouville’s equation on \(####\), Math. Z., 263, 307-329 (2009) · Zbl 1172.53026 · doi:10.1007/s00209-008-0419-1
[49] Poláčik, P.; Quittner, P.; Souplet, P., Singularity and decay estimates in superlinear problems via Liouville-type theorems: I. Elliptic equations and systems, Duke Math. J., 139, 555-579 (2007) · Zbl 1146.35038 · doi:10.1215/S0012-7094-07-13935-8
[50] Ratzkin, J., On a fourth order conformal invariant (2020)
[51] Ratzkin, J., On constant Q-curvature metrics with isolated singularities (2020)
[52] Savin, O., Phase transitions, minimal surfaces and a conjecture of De Giorgi, Current Developments in Mathematics, 59-113 (2010), Somerville, MA: International Press, Somerville, MA · Zbl 1219.35295
[53] Serrin, J., Local behavior of solutions of quasi-linear equations, Acta. Math., 111, 247-302 (1964) · Zbl 0128.09101 · doi:10.1007/bf02391014
[54] Simon, L., Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. Math., 118, 525-571 (1983) · Zbl 0549.35071 · doi:10.2307/2006981
[55] Soranzo, R., Isolated singularities of positive solutions of a superlinear biharmonic equation, Potential Anal., 6, 57-85 (1997) · Zbl 0877.35006 · doi:10.1023/a:1017927605423
[56] Sun, L.; Xiong, J., Classification theorems for solutions of higher order boundary conformally invariant problems, I, J. Funct. Anal., 271, 3727-3764 (2016) · Zbl 1355.31004 · doi:10.1016/j.jfa.2016.08.020
[57] Véron, L., Comportement asymptotique des solutions d’équations elliptiques semi-linéaires dans R^N, Ann. Mat. Pura Appl., 127, 25-50 (1981) · Zbl 0467.35013 · doi:10.1007/bf01811717
[58] Wei, J.; Xu, X., Classification of solutions of higher order conformally invariant equations, Math. Ann., 313, 207-228 (1999) · Zbl 0940.35082 · doi:10.1007/s002080050258
[59] Xu, X., Uniqueness theorem for the entire positive solutions of biharmonic equations in \(####\), Proc. R. Soc. Edinburgh A, 130, 651-670 (2000) · Zbl 0961.35037 · doi:10.1017/s0308210500000354
[60] Yang, H., Asymptotic behavior of positive solutions to a nonlinear biharmonic equation near isolated singularities, Calc. Var. Partial Differ. Equ., 59, 130 (2020) · Zbl 1445.35152 · doi:10.1007/s00526-020-01767-9
[61] Yang, H.; Zou, W., On isolated singularities of fractional semi-linear elliptic equations, Ann. Inst. Henri Poincaré C, 38, 403-420 (2020) · Zbl 1458.35462 · doi:10.1016/j.anihpc.2020.07.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.