×

Reduced-order intermediate variable observer based fault estimation and fault-tolerant control for fuzzy stochastic systems with exogenous disturbance. (English) Zbl 1533.93089

Summary: This paper studies fault estimation and fault-tolerant control problems for fuzzy systems with exogenous disturbance and stochastic noise. The fuzzy reduced-order intermediate variable observers and the disturbance observers are proposed to reconstruct the sensor fault, the actuator fault and the disturbance. According to the estimated results, the observer based fault-tolerant controllers are devised. Compared with the full-order observer design method, the designed reduced-order observers are with lower dimensions and less cost. Different from the classic intermediate observer, the feedback term of the output estimation error is introduced into our observers, which increases the design freedom. And the obtained linear matrix inequality conditions can ensure that the whole closed-loop systems are mean-square exponentially stable. Finally, two examples are offered to verify the feasibility of the proposed method.

MSC:

93B11 System structure simplification
93B53 Observers
93B35 Sensitivity (robustness)
93C42 Fuzzy control/observation systems
93E03 Stochastic systems in control theory (general)
93C73 Perturbations in control/observation systems
Full Text: DOI

References:

[1] Li, Y. X.; Wu, L. B.; Hu, Y. H., Fault-tolerant control for nonlinear switched systems with unknown control coefficients and full-state constraints, Inf. Sci., 582, 750-766 (2021) · Zbl 1530.93084
[2] Gao, Z.; Cecati, C.; Ding, S. X., A survey of fault diagnosis and fault-tolerant techniques-part i: fault diagnosis with model-based and signal-based approaches, IEEE Trans. Ind. Electron., 62, 6, 3757-3767 (2015)
[3] Li, T.; Tang, X. L.; Ge, J. F.; Fei, S. M., Event-based fault-tolerant control for networked control systems applied to aircraft engine system, Inf. Sci., 512, 1063-1077 (2020) · Zbl 1461.93313
[4] Xu, N.; Zhu, Y. Z.; Yang, R. N., Finite-frequency fault estimation and accommodation for continuous-time Markov jump linear systems with imprecise statistics of modes transitions, Inf. Sci., 585, 594-608 (2022) · Zbl 1532.93267
[5] Yang, X. M.; Li, T. S.; Wu, Y., Fault estimation and fault tolerant control for discrete-time nonlinear systems with perturbation by a mixed design scheme, J. Franklin Inst., 358, 3, 1860-1887 (2020) · Zbl 1458.93060
[6] Liu, X. H.; Han, J.; Wei, X. J., Intermediate variable observer based fault estimation and fault-tolerant control for nonlinear stochastic system with exogenous disturbance, J. Franklin Inst.-Eng. Appl. Math., 357, 9, 5380-5401 (2020) · Zbl 1441.93062
[7] Yin, Y. Y.; Shi, J. B.; Liu, F.; Liu, Y. Q., Robust fault detection of singular Markov jump systems with partially unknown information, Inf. Sci., 537, 368-379 (2020) · Zbl 1478.93726
[8] Zhang, J.; Li, S.; Xiang, Z. R., Adaptive fuzzy finite-time fault-tolerant control for switched nonlinear large-scale systems with actuator and sensor faults, J. Franklin Inst.-Eng. Appl. Math., 357, 16, 11629-11644 (2020) · Zbl 1450.93029
[9] Zhao, L.; Yang, G. H., Adaptive fault-tolerant control for nonlinear multi-agent systems with DoS attacks, Inf. Sci., 526, 39-53 (2020) · Zbl 1461.93272
[10] Cui, G. Z.; Yang, W.; Yu, J. P., Neural network-based finite-time adaptive tracking control of nonstrict-feedback nonlinear systems with actuator failures, Inf. Sci., 545, 298-311 (2021) · Zbl 1478.93312
[11] Zhang, H.; Han, J.; Wang, Y.; Liu, X., Sensor fault estimation of switched fuzzy systems with unknown input, IEEE Trans. Fuzzy Syst., 26, 3, 1114-1124 (2018)
[12] Wang, X. D.; Fei, Z. Y.; Wang, T.; Yang, L., Dynamic event-triggered actuator fault estimation and accommodation for dynamical systems, Inf. Sci., 525, 119-133 (2020) · Zbl 1461.93321
[13] Zhu, B. P.; Wang, Y. C.; Zhang, H. G.; Xie, X. P., Distributed finite-time fault estimation and fault-tolerant control for cyber-physical systems with matched uncertainties, Appl. Math. Comput., 403 (2021) · Zbl 1510.93065
[14] Dimassi, H., A novel fault reconstruction and estimation approach for a class of systems subject to actuator and sensor faults under relaxed assumptions, ISA Trans., 111, 192-210 (2020)
[15] Yang, H. Y.; Jiang, Y. C.; Yin, S., Adaptive fuzzy fault-tolerant control for Markov jump systems with additive and multiplicative actuator faults, IEEE Trans. Fuzzy Syst., 29, 4, 772-785 (2020)
[16] Yang, H. Y.; Jiang, Y. C.; Yin, S., Fault-tolerant control of time-delay Markov jump systems with Itô stochastic process and output disturbance based on sliding mode observer, IEEE Trans. Ind. Inf., 14, 12, 5299-5307 (2018)
[17] Kang, Y. F.; Yao, L. N.; Wu, W., Sensor fault diagnosis and fault tolerant control for the multiple manipulator synchronized control system, ISA Trans., 106, 243-252 (2020)
[18] Wang, Y.; Rotondo, D.; Puig, V.; Cembrano, G., Fault-tolerant control based on virtual actuator and sensor for discrete-time descriptor systems, IEEE Trans. Circuits Syst. I-Regular Papers, 67, 12, 5316-5325 (2020) · Zbl 1468.93118
[19] Fu, X. J.; Pang, X. R., Robust fault estimation and fault-tolerant control for nonlinear Markov jump systems with time-delays, Automatika, 62, 1, 21-31 (2020)
[20] Han, J.; Liu, X. H.; Wei, X. J.; Sun, S. X., A dynamic proportional-integral observer-based nonlinear fault-tolerant controller design for nonlinear system with partially unknown dynamic, IEEE Trans. Syst. Man Cybern.: Syst. (2021)
[21] Zhu, J. W.; Yang, G. H.; Wang, H.; Wang, F. L., Fault estimation for a class of nonlinear systems based on intermediate estimator, IEEE Trans. Automatic Control, 61, 9, 2518-2524 (2016) · Zbl 1359.93075
[22] Sakthivel, R.; Kavikumar, R.; Mohammadzadeh, A., Fault estimation for mode-dependent IT2 fuzzy systems with quantized output signals, IEEE Trans. Fuzzy Syst., 29, 298-309 (2021)
[23] Wei, Y. H.; Tong, D. B.; Chen, Q. Y., Simultaneous actuator and sensor fault estimation for neutral-type systems via intermediate observer, Trans. Inst. Meas. Control, 44, 7, 1505-1517 (2021)
[24] Wang, G. L.; Huang, Y. F., Fault estimation for continuous-time Markovian jump systems: an auxiliary system approach, IEEE Access, 9, 83163-83174 (2021)
[25] Kaviarasan, B.; Kwon, O. M.; Park, M. J.; Sakthivel, R., Stochastic faulty estimator-based non-fragile tracking controller for multi-agent systems with communication delay, Appl. Math. Comput., 392 (2021) · Zbl 1508.93018
[26] Zhu, J. W.; Yang, G. H., Robust distributed fault estimation for a network of dynamical systems, IEEE Trans. Control Network Syst., 5, 1, 14-22 (2018) · Zbl 1507.93062
[27] Sun, S. X.; Zhang, H. G.; Zhang, J., Multiple delay-dependent robust H-infinity finite-time filtering for uncertain Itô stochastic Takagi-Sugeno fuzzy semi-Markovian jump systems with state constraints, IEEE Trans. Fuzzy Syst., 30, 2, 321-331 (2022)
[28] Ping, X. B.; Pedrycz, W., Output feedback model predictive control of interval type-2 T-S fuzzy system with bounded disturbance, IEEE Trans. Fuzzy Syst., 28, 1, 148-162 (2020)
[29] Chu, X. Y.; Nian, X. H.; Wang, H. B.; Xiong, H. Y., Distributed fault tolerant tracking control for large-scale multi-motor web-winding systems, IET Control Theory Appl., 13, 4, 543-553 (2018) · Zbl 1434.93063
[30] Chu, X. Y.; Nian, X. H.; Xiong, H. Y.; Wang, H. B., Robust fault estimation and fault tolerant control for three-motor web-winding systems, Int. J. Control, 94, 11, 3009-3021 (2020) · Zbl 1478.93134
[31] Zhang, J. H.; Chen, D. D.; Shen, G. H., Disturbance observer based adaptive fuzzy sliding mode control: a dynamic sliding surface approach, Automatica, 129 (2021) · Zbl 1478.93106
[32] Zhang, H. G.; Han, J.; Luo, C. M.; Wang, Y. C., Fault-tolerant control of a nonlinear system based on generalized fuzzy hyperbolic model and adaptive disturbance observer, IEEE Trans. Syst. Man Cybern.: Syst., 47, 8, 2289-2300 (2017)
[33] Liu, X.; Gao, X.; Han, J., Distributed fault estimation for a class of nonlinear multiagent systems, IEEE Trans. Syst. Man Cybern.: Syst., 50, 9, 3382-3390 (2020)
[34] Han, J.; Liu, X. H.; Wei, X. J., Reduced-order observer based fault estimation and fault-tolerant control for switched stochastic systems with actuator and sensor faults, ISA Trans., 88, 91-101 (2019)
[35] Zhang, S.; Sheng, L.; Gao, M.; Zhou, D. H., Intermittent fault detection for discrete-time linear stochastic systems with time delay, IET Control Theory Appl., 14, 3, 511-518 (2020) · Zbl 07907079
[36] Wei, X. J.; Sun, S. X., Elegant anti-disturbance control for discrete-time stochastic systems with nonlinearity and multiple disturbances, Int. J. Control., 91, 3, 706-714 (2018) · Zbl 1396.93111
[37] Han, J.; Zhang, H. G.; Wang, Y. C.; Liu, X. H., Anti-disturbance control for nonlinear system via adaptive disturbance observer, Int. J. Robust Nonlinear Control, 27, 12, 2121-2144 (2017) · Zbl 1370.93096
[38] Han, J.; Zhang, H. G.; Wang, Y. C.; Zhang, K., Fault estimation and fault-tolerant control for switched fuzzy stochastic systems, IEEE Trans. Fuzzy Syst., 26, 5, 2993-3003 (2018)
[39] Wu, L. G.; Ho, D. W.C., Fuzzy filter design for Itô stochastic systems with application to sensor fault detection, IEEE Trans. Fuzzy Syst., 17, 1, 233-242 (2009)
[40] Chilali, M.; Gahinet, P., H_∞)design with pole placement constraints: an LMI approach, IEEE Trans. Automatic Control, 41, 3, 358-367 (1996) · Zbl 0857.93048
[41] Han, J.; Zhang, H. G.; Wang, Y. C.; Liu, X. H., Robust state/fault estimation and fault tolerant control for T-S fuzzy systems with sensor and actuator faults, J. Franklin Inst., 353, 2, 615-641 (2016) · Zbl 1395.93515
[42] Zhang, K.; Jiang, B.; Shi, P., A new approach to observer-based fault-tolerant controller design for Takagi-Sugeno fuzzy systems with state delay, Circuits Syst. Signal Process., 28, 679-697 (2009) · Zbl 1173.94476
[43] Wei, X. J.; Wu, Z. J.; Karimi, H. R., Disturbance observer-based disturbance attenuation control for a class of stochastic systems, Automatica, 63, 21-25 (2016) · Zbl 1329.93129
[44] Li, Y. K.; Chen, M.; Cai, L.; Wu, Q. X., Resilient control based on disturbance observer for nonlinear singular stochastic hybrid system with partly unknown Markovian jump parameters, J. Franklin Inst., 355, 5, 2243-2265 (2018) · Zbl 1393.93135
[45] P. Gahinet, A. Nemirovski, A. Laub, M. Chilali, Matlab LMI control toolbox, The MathWorks, Inc. (1995).
[46] K. Tanaka, H.O. Wang, Fuzzy control systems design and analysis: a linear matrix inequality approach, John Wiley & Sons, Inc. (2001).
[47] Pedrycz, W., Fuzzy control and fuzzy systems (1993), Research Studies Press Ltd. · Zbl 0839.93006
[48] Han, J.; Liu, X. H.; Gao, X. W.; Wei, X. J., Intermediate observer based robust distributed fault estimation for nonlinear multi-agent systems with directed graphs, IEEE Trans. Industrial Inf., 16, 12, 7426-7436 (2020) · Zbl 1228.81208
[49] Qiu, J. B.; Feng, G.; Gao, H. J., Observer-based piecewise affine output feedback controller synthesis of continuous-time T-S Fuzzy affine dynamic systems using quantized measurements, IEEE Trans. Fuzzy Syst., 20, 6, 1046-1062 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.