×

Integrating a micromechanical model for multiscale analyses. (English) Zbl 07878325

Summary: The Chang-Hicher micromechanical model based on a static hypothesis, not unlike other models developed separately at around the same epoch, has proved its efficiency in predicting soil behaviour. For solving boundary value problems, the model has now integrated stress-strain relationships by considering both the micro and macro levels. The first step was to solve the linearized mixed control constraints by the introduction of a predictor-corrector scheme and then to implement the micro-macro relationships through an iterative procedure. Two return mapping schemes, consisting of the closest-point projection method and the cutting plane algorithm, were subsequently integrated into the interparticle force-displacement relations. Both algorithms have proved to be efficient in studies devoted to elementary tests and boundary value problems. Closest-point projection method compared with cutting plane algorithm, however, has the advantage of being more intensive cost efficient and just as accurate in the computational task of integrating the local laws into the micromechanical model. The results obtained demonstrate that the proposed linearized method is capable of performing loadings under stress and strain control. Finally, by applying a finite element analysis with a biaxial test and a square footing, it can be recognized that the Chang-Hicher micromechanical model performs efficiently in multiscale modelling.
{Copyright © 2017 John Wiley & Sons, Ltd.}

MSC:

74Sxx Numerical and other methods in solid mechanics
74Cxx Plastic materials, materials of stress-rate and internal-variable type
74Lxx Special subfields of solid mechanics
Full Text: DOI

References:

[1] ChangCS, HicherPY. An elasto‐plastic model for granular materials with microstructural consideration. Int J Solids Struct. 2005;42(14):4258‐4277. https://doi.org/10.1016/j.ijsolstr.2004.09.021 · Zbl 1120.74405 · doi:10.1016/j.ijsolstr.2004.09.021
[2] NicotF, DarveF. A multi‐scale approach to granular materials. Mech Mater. 2005;37(9):980‐1006. https://doi.org/10.1016/j.mechmat.2004.11.002 · doi:10.1016/j.mechmat.2004.11.002
[3] NicotF, DarveF. The H‐microdirectional model: accounting for a mesoscopic scale. Mech Mater. 2011;43(12):918‐929. https://doi.org/10.1016/j.mechmat.2011.07.006 · doi:10.1016/j.mechmat.2011.07.006
[4] YinZY, ChangCS. Microstructural modelling of stress‐dependent behaviour of clay. Int J Solids Struct. 2009;46(6):1373‐1388. https://doi.org/10.1016/j.ijsolstr.2008.11.006 · Zbl 1236.74199 · doi:10.1016/j.ijsolstr.2008.11.006
[5] YinZY, ChangCS. Non‐uniqueness of critical state line in compression and extension conditions. Int J Numer Anal Methods Geomech. 2009;33(10):1315‐1338. https://doi.org/10.1002/nag.770 · Zbl 1273.74326 · doi:10.1002/nag.770
[6] YinZY, ChangCS, HicherPY, KarstunenM. Micromechanical analysis of kinematic hardening in natural clay. Int J Plast. 2009;25(8):1413‐1435. https://doi.org/10.1016/j.ijplas.2008.11.009 · Zbl 1171.74029 · doi:10.1016/j.ijplas.2008.11.009
[7] YinZY, HattabM, HicherPY. Multiscale modeling of a sensitive marine clay. Int J Numer Anal Methods Geomech. 2011;35(15):1682‐1702. https://doi.org/10.1002/nag.977 · doi:10.1002/nag.977
[8] YinZY, ChangCS. Stress-dilatancy behavior for sand under loading and unloading conditions. Int J Numer Anal Methods Geomech. 2013;37(8):855‐870. https://doi.org/10.1002/nag.1125 · doi:10.1002/nag.1125
[9] YinZY, XuQ, ChangCS. Modeling cyclic behavior of clay by micromechanical approach. J Eng Mech. 2012;139(9):1305‐1309. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000516 · doi:10.1061/(ASCE)EM.1943-7889.0000516
[10] YinZY, ZhaoJ, HicherPY. A micromechanics‐based model for sand‐silt mixtures. Int J Solids Struct. 2014;51(6):1350‐1363. https://doi.org/10.1016/j.ijsolstr.2013.12.027 · doi:10.1016/j.ijsolstr.2013.12.027
[11] ShengD, SloanSW, YuHS. Aspects of finite element implementation of critical state models. Comput Mech. 2000;26(2):185‐196. https://doi.org/10.1007/s004660000166 · Zbl 0989.74072 · doi:10.1007/s004660000166
[12] SimoJC, HughesTJR. General return mapping algorithms for rate‐independent plasticity. Constitutive laws for engineering materials: theory and applications. 1987;1(1987):221‐232.
[13] SimoJC, TaylorRL. A return mapping algorithm for plane stress elastoplasticity. Int J Numer Methods Eng. 1986;22(3):649‐670. https://doi.org/10.1002/nme.1620220310 · Zbl 0585.73059 · doi:10.1002/nme.1620220310
[14] SloanSW. Substepping schemes for the numerical integration of elastoplastic stress-strain relations. Int J Numer Methods Eng. 1987;24(5):893‐911. https://doi.org/10.1002/nme.1620240505 · Zbl 0611.73037 · doi:10.1002/nme.1620240505
[15] SloanSW, AbboAJ, ShengD. Refined explicit integration of elastoplastic models with automatic error control. Eng Comput. 2001;18(1/2):121‐194. https://doi.org/10.1108/02644400110365842 · Zbl 1015.74061 · doi:10.1108/02644400110365842
[16] TamagniniC, CastellanzaR, NovaR. A generalized backward Euler algorithm for the numerical integration of an isotropic hardening elastoplastic model for mechanical and chemical degradation of bonded geomaterials. Int J Numer Anal Methods Geomech. 2002;26(10):963‐1004. https://doi.org/10.1002/nag.231 · Zbl 1151.74427 · doi:10.1002/nag.231
[17] VaunatJ, CanteJC, LedesmaA, GensA. A stress point algorithm for an elastoplastic model in unsaturated soils. Int J Plast. 2000;16(2):121‐141. https://doi.org/10.1016/S0749-6419(99)00033-9 · Zbl 0974.74069 · doi:10.1016/S0749-6419(99)00033-9
[18] WangX, WangLB, XuLM. Formulation of the return mapping algorithm for elastoplastic soil models. Comput Geotech. 2004;31(4):315‐338. https://doi.org/10.1016/j.compgeo.2004.03.002 · doi:10.1016/j.compgeo.2004.03.002
[19] XuTH, ZhangLM. Numerical implementation of a bounding surface plasticity model for sand under high strain‐rate loadings in LS‐DYNA. Comput Geotech. 2015;66:203‐218. https://doi.org/10.1016/j.compgeo.2015.02.002 · doi:10.1016/j.compgeo.2015.02.002
[20] YamakawaY, HashiguchiK, IkedaK. Implicit stress‐update algorithm for isotropic Cam‐clay model based on the subloading surface concept at finite strains. Int J Plast. 2010;26(5):634‐658. https://doi.org/10.1016/j.ijplas.2009.09.007 · Zbl 1441.74047 · doi:10.1016/j.ijplas.2009.09.007
[21] ZhangY, BuscarneraG. Implicit integration under mixed controls of a breakage model for unsaturated crushable soils. Int J Numer Anal Methods Geomech. 2016;40(6):887‐918. https://doi.org/10.1002/nag.2431 · doi:10.1002/nag.2431
[22] LiX, YuHS. Tensorial characterisation of directional data in micromechanics. Int J Solids Struct. 2011;48(14):2167‐2176. https://doi.org/10.1016/j.ijsolstr.2011.03.019 · doi:10.1016/j.ijsolstr.2011.03.019
[23] Lloret‐CabotM, SloanS, ShengD, AbboA. Error behaviour in explicit integration algorithms with automatic substepping. Int J Numer Methods Eng. 2016;108(9):1030‐1053. https://doi.org/10.1002/nme.5245 · Zbl 07870082 · doi:10.1002/nme.5245
[24] BorjaRI, LeeSR. Cam‐clay plasticity, part 1: implicit integration of elasto‐plastic constitutive relations. Comput Methods Appl Mech Eng. 1990;78(1):49‐72. https://doi.org/10.1016/0045-7825(90)90152-C · Zbl 0718.73034 · doi:10.1016/0045-7825(90)90152-C
[25] BorjaRI, SamaKM, SanzPF. On the numerical integration of three‐invariant elastoplastic constitutive models. Comput Methods Appl Mech Eng. 2003;192(9):1227‐1258. https://doi.org/10.1016/S0045-7825(02)00620-5 · Zbl 1036.74007 · doi:10.1016/S0045-7825(02)00620-5
[26] CecílioDL, DevlooPR, GomesSM, dosSantosER, ShauerN. An improved numerical integration algorithm for elastoplastic constitutive equations. Comput Geotech. 2015;64:1‐9. https://doi.org/10.1016/j.compgeo.2014.10.013 · doi:10.1016/j.compgeo.2014.10.013
[27] HuangJ, GriffithsDV. Return mapping algorithms and stress predictors for failure analysis in geomechanics. J Eng Mech. 2009;135(4):276‐284. https://doi.org/10.1061/(ASCE)0733‐9399 · doi:10.1061/(ASCE)0733‐9399
[28] KhoeiAR, JamaliN. On the implementation of a multi‐surface kinematic hardening plasticity and its applications. Int J Plast. 2005;21(9):1741‐1770. https://doi.org/10.1016/j.ijplas.2004.11.010 · Zbl 1114.74376 · doi:10.1016/j.ijplas.2004.11.010
[29] OrtizM, SimoJC. An analysis of a new class of integration algorithms for elastoplastic constitutive relations. Int J Numer Methods Eng. 1986;23(3):353‐366. https://doi.org/10.1002/nme.1620230303 · Zbl 0585.73058 · doi:10.1002/nme.1620230303
[30] RouainiaM, MuirWD. Implicit numerical integration for a kinematic hardening soil plasticity model. Int J Numer Anal Methods Geomech. 2001;25(13):1305‐1325. https://doi.org/10.1002/nag.179 · Zbl 1112.74538 · doi:10.1002/nag.179
[31] LiaoCL, ChangTP, YoungDH, ChangCS. Stress‐strain relationship for granular materials based on the hypothesis of best fit. Int J Solids Struct. 1997;34(31‐32):4087‐4100. https://doi.org/10.1016/S0020-7683(97)00015-2 · Zbl 0942.74511 · doi:10.1016/S0020-7683(97)00015-2
[32] LiX, YuHS, LiXS. Macro-micro relations in granular mechanics. Int J Solids Struct. 2009;46(25):4331‐4341. https://doi.org/10.1016/j.ijsolstr.2009.08.018 · Zbl 1176.74055 · doi:10.1016/j.ijsolstr.2009.08.018
[33] BardetJP, ChoucairW. A linearized integration technique for incremental constitutive equations. Int J Numer Anal Methods Geomech. 1991;15(1):1‐19. https://doi.org/10.1002/nag.1610150102 · Zbl 0825.73595 · doi:10.1002/nag.1610150102
[34] HuC, LiuH. Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay. Comput Geotech. 2014;55:27‐41. https://doi.org/10.1016/j.compgeo.2013.07.012 · doi:10.1016/j.compgeo.2013.07.012
[35] ZhaoJ, ShengD, RouainiaM, SloanSW. Explicit stress integration of complex soil models. Int J Numer Anal Methods Geomech. 2005;29(12):1209‐1229. https://doi.org/10.1002/nag.456 · Zbl 1140.74561 · doi:10.1002/nag.456
[36] KriegRD, KriegDB. Accuracies of numerical solution methods for the elastic‐perfectly plastic model. ASME Trans J Press Vessel Technol. 1977;99(4):510‐515. https://doi.org/10.1115/1.3454568 · doi:10.1115/1.3454568
[37] FishJ, WagimanA. Multiscale finite element method for a locally nonperiodic heterogeneous medium. Comput Mech. 1993;12(3):164‐80. https://doi.org/10.1007/BF00371991 · Zbl 0779.73058 · doi:10.1007/BF00371991
[38] LyaminAV, SalgadoR, SloanSW, PrezziM. Two‐ and three‐dimensional bearing capacity of footings in sand. Géotech. 2007;57(8):647‐662. https://doi.org/10.1680/geot.2007.57.8.647 · doi:10.1680/geot.2007.57.8.647
[39] KanataniK. Distribution of directional data and fabric tensors. Int J Eng Sci. 1984;22(2):149‐164. https://doi.org/10.1016/0020-7225(84)90090-9 · Zbl 0586.73004 · doi:10.1016/0020-7225(84)90090-9
[40] KruytNP, RothenburgL. Kinematic and static assumptions for homogenization in micromechanics of granular materials. Mech Mater. 2004;36(12):1157‐73. https://doi.org/10.1016/j.mechmat.2002.12.001 · doi:10.1016/j.mechmat.2002.12.001
[41] MieheC, KochA. Computational micro‐to‐macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech. 2002;72(4):300‐317. https://doi.org/10.1007/s00419-002-0212-2 · Zbl 1032.74010 · doi:10.1007/s00419-002-0212-2
[42] NguyenVP, StroevenM, SluysLJ. Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments. J Multiscale Model. 2011;3(04):229‐70. https://doi.org/10.1142/S1756973711000509 · doi:10.1142/S1756973711000509
[43] PasternakE, MühlhausHB. Generalised homogenisation procedures for granular materials. J Eng Math. 2005;52(1):199‐229. https://doi.org/10.1007/s10665-004-3950-z · Zbl 1176.74056 · doi:10.1007/s10665-004-3950-z
[44] BažantP, OhBH. Efficient numerical integration on the surface of a sphere. ZAMM‐J Appl Math Mech. 1986;66(1):37‐49. https://doi.org/10.1002/zamm.19860660108 · Zbl 0597.65016 · doi:10.1002/zamm.19860660108
[45] GourvenecS, RandolphM, KingsnorthO. Undrained bearing capacity of square and rectangular footings. Int J Geomech. 2006;6(3):147‐157. https://doi.org/10.1061/(ASCE)1532‐3641 · doi:10.1061/(ASCE)1532‐3641
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.