×

Recovering the impedance function or shape of elastic obstacle from partial Cauchy data. (English) Zbl 1542.74039

Summary: In this paper, we focus on recovering the impedance function or the boundary shape from a pair of Cauchy data on the known boundary by using an indirect boundary integral equation. This present problem has been divided into two parts. The first part is to solve a Cauchy problem through using an indirect boundary integral equation method combining a regularization technique. Then, the elastic impedance function is given by a point to point method. The second part is to recover the elastic shape by a Newton-type iterative method. The effectiveness of the method has been shown by solving some examples.

MSC:

74J25 Inverse problems for waves in solid mechanics
35N25 Overdetermined boundary value problems for PDEs and systems of PDEs
35R30 Inverse problems for PDEs
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
74S15 Boundary element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Detecting cavities by electrostatic boundary measurements, Inverse Problems, 18, 1333-1353, 2002 · Zbl 1010.35117 · doi:10.1088/0266-5611/18/5/308
[2] On the far-field operator in elastic obstacle scattering, IMA J. Appl. Math., 67, 1-21, 2002 · Zbl 1141.35429 · doi:10.1093/imamat/67.1.1
[3] H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee and A. Wahab, in Mathematical Methods in Elasticity Imaging, Princeton University Press, 04, 2015. · Zbl 1332.35002
[4] H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee and A. Wahab, in Theory of Elasticity, 1986.
[5] Solving cauchy problems by minimizing an energy-like functional, Inverse Problems, 22, 115-133, 2006 · Zbl 1089.35084 · doi:10.1088/0266-5611/22/1/007
[6] E. Blasten and H. Liu, Recovering piecewise constant refractive indices by a single far-field pattern, Inverse Problems, 36 (2020), 085005, 16 pp. · Zbl 1446.35262
[7] Simultaneous reconstruction of shape and impedance in corrosion detection, Methods and Applications of Analysis, 17, 357-377, 2010 · Zbl 1219.35071 · doi:10.4310/MAA.2010.v17.n4.a3
[8] Y. Chang, Y. Guo, H. Liu and D. Zhang, Recovering source location, polarization, and shape of obstacle from elastic scattering data, J. Comput. Phy., 489 (2023), Paper No. 112289, 22 pp. · Zbl 07705921
[9] The inverse scattering problem by an elastic inclusion, Adv. Comput. Math., 44, 453-476, 2018 · Zbl 1388.35182 · doi:10.1007/s10444-017-9550-z
[10] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th edition (New York: Springer), 2019. · Zbl 1425.35001
[11] H. Diao, H. Liu and L. Wang, On generalized Holmgren’s principle to the Lamé operator with applications to inverse elastic problems, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 179, 50 pp. · Zbl 1450.35290
[12] Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J. Imag. Sci., 12, 809-838, 2019 · Zbl 1524.78044 · doi:10.1137/18M1227263
[13] J. Elschner and M. Yamamoto, Uniqueness in inverse elastic scattering with finitely many incident waves, Inverse Problems, 26 (2010), 045005, 8 pp. · Zbl 1189.35374
[14] Discrete methods in the study of an inverse problem for Laplace’s equation, IMA J. Numer. Anal., 19, 105-118, 1999 · Zbl 0969.65101 · doi:10.1093/imanum/19.1.105
[15] Singular boundary method for wave propagation analysis inperiodic structures, J. Sound Vib., 425, 170-188, 2018
[16] Z. Fu, Q. Xi, Y. Gu, et al., Singular boundary method: A review and computer implementation aspects, Eng. Anal. Bound. Elem., 147 (2023), 231-266. · Zbl 1521.74318
[17] A boundary collocation method for anomalous heat conduction analysis in functionally graded materials, Comput. Math. Appl., 88, 91-109, 2021 · Zbl 1524.65906 · doi:10.1016/j.camwa.2020.02.023
[18] G. Hu, A. Kirsch and M. Sini, Some inverse problems arising from elastic scattering by rigid obstacles, Inverse Problems, 29 (2013), 015009, 21 pp. · Zbl 1334.74047
[19] Direct and inverse time-harmonic elastic scattering from point-like and extended obstacles, Inverse Problems and Imaging, 14, 1025-1056, 2020 · Zbl 1464.74085 · doi:10.3934/ipi.2020054
[20] A three-dimensional indirect boundary integral equation method for the scattering of seismic waves in a poroelastic layered half-space, Eng. Anal. Bound. Elem., 135, 167-181, 2022 · Zbl 1521.74323 · doi:10.1016/j.enganabound.2021.11.012
[21] Testing the integrity of some cavity-the cauchy problem and the range test, Appl. Nume. Math., 58, 899-914, 2008 · Zbl 1151.78011 · doi:10.1016/j.apnum.2007.04.007
[22] The method of fundamental solutions for the identification of a scatterer with impedance boundary condition in interior inverse acoustic scattering, Eng. Anal. Bound. Elem., 92, 218-224, 2018 · Zbl 1403.76084 · doi:10.1016/j.enganabound.2017.07.005
[23] R. Kress, Linear Integral Equations, Springer-Verlag, Berlin, 1989. · Zbl 0671.45001
[24] Uniqueness and numerical methods in inverse obstacle scattering, Journal of Physics: Conference Series, 73, 012003, 2007
[25] V. D. Kupradze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Amsterdam: North-Holland, 1979. · Zbl 0406.73001
[26] On the fréchet derivative in elastic obstacle scattering, SIAM J. Appl. Math., 72, 1493-1507, 2012 · Zbl 1259.35154 · doi:10.1137/110834160
[27] F. Le Louër, A domain derivative-based method for solving elastodynamic inverse obstacle scattering problems, Inverse Problems, 31 (2015), 115006, 27 pp. · Zbl 1329.35353
[28] J. Li, P. Li, H. Liu and X. Liu, Recovering multiscale buried anomalies in a two-layered medium, Inverse Problems, 31 (2015), 105006, 28 pp. · Zbl 1330.78012
[29] J. Li, H. Liu and Y. Wang, Recovering an electromagnetic obstacle by a few phaseless backscattering measurements, Inverse Problems, 33 (2017), 035011, 20 pp. · Zbl 1432.78008
[30] Stable determination of sound-hard polyhedral scatterers by a minimal number of scattering measurements, Journal of Differential Equations, 262, 1631-1670, 2017 · Zbl 1352.74148 · doi:10.1016/j.jde.2016.10.021
[31] Mosco convergence for \(H(curl)\) spaces, higher integrability for Maxwell’s equations, and stability in direct and inverse EM scattering problems, J. Eur. Math. Soc., 21, 2945-2993, 2019 · Zbl 1502.78020 · doi:10.4171/jems/895
[32] Extended sampling method for inverse elastic scattering problems using one incident wave, SIAM J. Imag. Sci., 12, 874-892, 2019 · Zbl 1515.74038 · doi:10.1137/19M1237788
[33] The multi-domain FMM-IBEM to model elastic wave scattering by three-dimensional inclusions in infinite domain, Eng. Anal. Bound. Elem., 60, 95-105, 2015 · Zbl 1403.74194 · doi:10.1016/j.enganabound.2015.02.003
[35] Stable determination of cavities in elastic bodies, Inverse Problems, 20, 453-480, 2004 · Zbl 1073.35212 · doi:10.1088/0266-5611/20/2/010
[36] A linear sampling method for near-field inverse problems in elastodynamics, Inverse Problems, 20, 713-736, 2004 · Zbl 1086.35145 · doi:10.1088/0266-5611/20/3/005
[37] Elastic scatterer reconstruction via the adjoint sampling method, SIAM J. Appl. Math., 67, 1330-1352, 2007 · Zbl 1146.35094 · doi:10.1137/060653123
[38] Application of neural networks to inverse elastic scattering problems with near-field measurements, Electron. Res. Arch., 31, 7000-7020, 2023 · Zbl 1532.65102 · doi:10.3934/era.2023355
[39] The method of fundamental solutions for the high frequency acoustic-elastic problem and its relationship to a pure acoustic problem, Eng. Anal. Bound. Elem., 156, 299-310, 2023 · Zbl 1539.74505 · doi:10.1016/j.enganabound.2023.08.010
[40] An integral equations method combined minimum norm solution for 3D elastostatics Cauchy problem, Comput. Meth. Appl. Mech. Engrg., 271, 231-252, 2014 · Zbl 1296.35187 · doi:10.1016/j.cma.2013.12.013
[41] An invariant method of fundamental solutions for the Cauchy problem in two-dimensional isotropic linear elasticity, J. Sci. Comput., 64, 197-215, 2015 · Zbl 06478158 · doi:10.1007/s10915-014-9929-7
[42] An invariant method of fundamental solutions for two-dimensional isotropic linear elasticity, Int. J. Solids Struct., 117, 191-207, 2017 · doi:10.1016/j.ijsolstr.2017.02.022
[43] A boundary integral equation method for the fluid-solid interaction problem, Comm. Anal. Mech., 15, 716-742, 2023 · Zbl 07919373 · doi:10.3934/cam.2023035
[44] A highly accurate indirect boundary integral equation solution for three dimensional elastic scattering problem, Eng. Anal. Bound. Elem., 159, 402-417, 2024 · Zbl 07855281 · doi:10.1016/j.enganabound.2023.12.015
[45] A stable node-based smoothed finite element method with PML technique for the elastic wave obstacle scattering, Eng. Anal. Bound. Elem., 130, 249-267, 2021 · Zbl 1521.74261 · doi:10.1016/j.enganabound.2021.05.015
[46] Analysis of underwater acoustic propagation induced by structural vibration in arctic ocean environment based on hybrid FEM-WSM solver, Ocean Engrg., 287, 115922, 2023 · doi:10.1016/j.oceaneng.2023.115922
[47] Q. Xi, Z. Fu, M. Zou and C. Zhang, An efficient hybrid collocation scheme for vibro-acoustic analysis of the underwater functionally graded structures in the shallow ocean, Comput. Meth. Appl. Mech. Engrg., 418 (2024), Paper No. 116537, 18 pp. · Zbl 1539.74117
[48] Three dimensional modified BEM analysis of forward scattering problems in elastic solids, Eng. Anal. Bound. Elem., 122, 145-154, 2021 · Zbl 1464.74342 · doi:10.1016/j.enganabound.2020.10.012
[49] Modified BEM for scattering analysis by a flaw at interface in an anisotropic multi-layered plate, Eng. Anal. Bound. Elem., 152, 704-727, 2023 · Zbl 1539.74507 · doi:10.1016/j.enganabound.2023.04.028
[50] The application of elastic impedance inversion in reservoir prediction at the jinan area of tarim oilfield, Applied Geophysics, 4, 201-206, 2007
[51] W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phy., 417 (2020), 109594, 18 pp. · Zbl 1437.68157
[52] On a hybrid approach for recovering multiple obstacles, Communications in Computational Physics, 31, 869-892, 2022 · Zbl 1482.62044 · doi:10.4208/cicp.OA-2021-0124
[53] J. Yue, G. R. Liu, M. Li, et al., An edge-based smoothed finite element method for wave scattering by an obstacle in elastic media, Eng. Anal. Bound. Elem., 101 (2019), 121-138. · Zbl 1464.74224
[54] Elastic impedance inversion based on improved particle swarm optimization, Journal of Physics: Conference Series, 1069, 012042, 2008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.