×

An adaptive isogeometric analysis meshfree collocation method for elasticity and frictional contact problems. (English) Zbl 07859734

Summary: A collocation method has been recently developed as a powerful alternative to Galerkin’s method in the context of isogeometric analysis, characterized by significantly reduced computational cost, but still guaranteeing higher-order convergence rates. In this work, we propose a novel adaptive isogeometric analysis meshfree collocation (IGAM-C) for the two-dimensional (2D) elasticity and frictional contact problems. The concept of the IGAM-C method is based upon the correspondence between the isogeometric collocation and reproducing kernel meshfree approach, which facilitates the robust mesh adaptivity in isogeometric collocation. The proposed method reconciles collocation at the Greville points via the discretization of the strong form of the equilibrium equations. The adaptive refinement in collocation is guided by the gradient-based error estimator. Moreover, the resolution of the nonlinear equations governing the contact problem is derived from a strong form to avoid the disadvantages of numerical integration. Numerical examples are presented to demonstrate the effectiveness, robustness, and straightforward implementation of the present method for adaptive analysis.
{© 2019 John Wiley & Sons, Ltd.}

MSC:

74Sxx Numerical and other methods in solid mechanics
65Dxx Numerical approximation and computational geometry (primarily algorithms)
74Mxx Special kinds of problems in solid mechanics

Software:

ISOGAT
Full Text: DOI

References:

[1] BelytschkoT, KrongauzY, OrganD, FlemingM, KryslP. Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng. 1996;139:3‐47. · Zbl 0891.73075
[2] LiS, HaoW, LiuWK. Numerical simulations of large deformation of thin shell structures using meshfree methods. Comput Mech. 2000;25:102‐116. · Zbl 0978.74087
[3] LiS, QianD, LiuWK, BelytschkoT. A meshfree contact‐detection algorithm. Comput Methods Appl Mech Eng. 2001;190:3271‐3292. · Zbl 0998.74081
[4] BelytschkoT, LuYY, GuL. Element‐free Galerkin methods. Int J Numer Methods Eng. 1994;37(2):229‐256. · Zbl 0796.73077
[5] RabczukT, XiaoSP, SauerM. Coupling of meshfree methods with finite elements: basic concepts and test results. Commun Numer Methods Eng. 2006;22:1031‐1065. · Zbl 1109.65082
[6] RabczukT, ZiG. A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech. 2007;39:743‐760. · Zbl 1161.74055
[7] HughesTJR, CottrellJA, BazilevsY. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng. 2005;194:4135‐4195. · Zbl 1151.74419
[8] De LorenzisL, TemizerI, WriggersP, ZavariseG. A large deformation frictional contact formulation using NURBS‐based isogeometric analysis. Int J Numer Methods Eng. 2011;87:1278‐1300. · Zbl 1242.74104
[9] De LorenzisL, WriggersP, ZavariseG. A mortar formulation for 3D large deformation contact using NURBS‐based isogeometric analysis and the augmented Lagrangian method. Comput Mech. 2012;49:1‐20. · Zbl 1356.74146
[10] De LorenzisL, WriggersP, HughesTJR. Isogeometric contact: a review. GAMM‐Mitteilungen. 2014;37:85‐123. · Zbl 1308.74114
[11] DimitriR, De LorenzisL, ScottMA, WriggersP, TaylorRL, ZavariseG. Isogeometric large deformation frictionless contact using T‐splines. Comput Methods Appl Mech Eng. 2014;269:394‐414. · Zbl 1296.74071
[12] DimitriR, De LorenzisL, WriggersP, ZavariseG. NURBS and T‐spline‐based isogeometric cohesive zone modeling of interface debonding. Comput Mech. 2014;54:369‐388. · Zbl 1398.74323
[13] TemizerI, WriggersP, HughesTJR. Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng. 2011;200:1100‐1112. · Zbl 1225.74126
[14] LiptonS, EvansJA, BazilevsY, ElguedjT, HughesTJR. Robustness of isogeometric structural discretizations und severe mesh distortion. Comput Methods Appl Mech Eng. 2010;199:357‐373. · Zbl 1227.74112
[15] BazilevsY, CaloVM, CottrellJA, et al. Isogeometric analysis using T‐splines. Comput Methods Appl Mech Eng. 2010;199:229‐263. · Zbl 1227.74123
[16] DörfelM, JüttlerB, SimeonB. Adaptive isogeometric analysis by local h‐refinement with T‐splines. Comput Methods Appl Mech Eng. 2010;199:264‐275. · Zbl 1227.74125
[17] Nguyen‐ThanhN, Nguyen‐XuanH, BordasS, RabczukT. Isogeometric analysis using polynomial splines over hierarchical T‐meshes for two‐dimensional elastic solids. Comput Methods Appl Mech Eng. 2011;200(21‐22):1892‐1908. · Zbl 1228.74091
[18] Nguyen‐ThanhN, ZhouK. Extended isogeometric analysis based on PHT‐splines for crack propagation near inclusions. Int J Numer Methods Eng. 2017;112:1777‐1800. · Zbl 07867190
[19] Nguyen‐ThanhN, ZhouK, ZhuangX, et al. Isogeometric analysis of large‐deformation thin shells using RHT‐splines for multiple‐patch coupling. Comput Methods Appl Mech Eng. 2017;316:1157‐1178. · Zbl 1439.74455
[20] SchillingerD, DedeL, ScottMA, et al. An isogeometric design‐through‐analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T‐spline CAD surfaces. Comput Methods Appl Mech Eng. 2012;249:116‐150. · Zbl 1348.65055
[21] VuongA‐V, GiannelliC, JüttlerB, SimeonB. A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput Methods Appl Mech Eng. 2012;200:3554‐3567. · Zbl 1239.65013
[22] JohannessenKA, KvamsdalT, DokkenT. Isogeometric analysis using LR B‐splines. Comput Methods Appl Mech Eng. 2014;269:471‐514. · Zbl 1296.65021
[23] de BorstR, ChenL. The role of Bézier extraction in adaptive isogeometric analysis: local refinement and hierarchical refinement. Int J Numer Methods Eng. 2018;113:999‐1019. · Zbl 1540.65066
[24] ChenL, de BorstR. Adaptive refinement of hierarchical T‐splines. Comput Methods Appl Mech Eng. 2018;337:220‐245. · Zbl 1440.65193
[25] AuricchioF, daVeigaLB, HughesTJ, RealiA, SangalliG. Isogeometric collocation for elastostatics and explicit dynamics. Comput Methods Appl Mech Eng. 2014;249:2‐14. · Zbl 1348.74305
[26] RealiA, GomezH. An isogeometric collocation approach for Bernoulli-Euler beams and Kirchhoff plates. Comput Methods Appl Mech Eng. 2015;284:623‐636. · Zbl 1423.74553
[27] KiendlJ, AuricchioF, daVeigaLB, LovadinaC, RealiA. Isogeometric collocation methods for the Reissner‐Mindlin plate problem. Comput Methods Appl Mech Eng. 2015;284:489‐507. · Zbl 1425.65199
[28] AnitescuC, JiaY, ZhangYJ, RabczukT. An isogeometric collocation method using superconvergent points. Comput Methods Appl Mech Eng. 2015;284:1073‐1097. · Zbl 1425.65193
[29] SchillingerD, HossainSJ, HughesTJR. Reduced Bezier element quadrature rules for quadratic and cubic splines in isogeometric analysis. Comput Methods Appl Mech Eng. 2014;277:1‐45. · Zbl 1425.65177
[30] SchillingerD, EvansJA, RealiA, ScottMA, HughesTJR. Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput Methods Appl Mech Eng. 2013;267:170‐232. · Zbl 1286.65174
[31] ChenJS, WangHP. New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng. 2000;187:441‐468. · Zbl 0980.74077
[32] SauerRA, LiS. A contact mechanics model for quasi‐continua. Int J Numer Methods Eng. 2007;71:931‐962. · Zbl 1194.74226
[33] SauerRA, LiS. An atomistically enriched continuum model for nanoscale contact mechanics and its application to contact scaling. J Nanosci Nanotechnol. 2008;8:3757‐3773.
[34] LiS, YaoQ, LiQ, FengXQ, GaoH. Contact stiffness of regularly patterned multi‐asperity interfaces. J Mech Phys Solids. 2018;111:277‐289. · Zbl 1441.74140
[35] De LorenzisL, EvansJA, HughesTJR, RealiA. Isogeometric collocation: Neumann boundary conditions and contact. Comput Methods Appl Mech Eng. 2015;284:21‐54. · Zbl 1423.74947
[36] KruseR, Nguyen‐ThanhN, De LorenzisL, HughesTJR. Isogeometric collocation for large deformation elasticity and frictional contact problems. Comput Methods Appl Mech Eng. 2015;296:73‐112. · Zbl 1423.74649
[37] SauerRA, De LorenzisL. A computational contact formulation based on surface potentials. Comput Methods Appl Mech Eng. 2013;253:369‐395. · Zbl 1297.74085
[38] SauerRA, De LorenzisL. An unbiased computational contact formulation for 3D friction. Int J Numer Methods Eng. 2014;101(4):251‐280. · Zbl 1352.74211
[39] LevinD. The approximation power of moving least‐squares. Math Comput Am Math Soc. 1998;67(224):1517‐1531. · Zbl 0911.41016
[40] LiS, LiuWK. Moving least‐square reproducing kernel method Part II: Fourier analysis. Comput Methods Appl Mech Eng. 1996;139:159‐193. · Zbl 0883.65089
[41] LuoY, Haüssler‐CombeU. An adaptivity procedure based on the gradient of strain energy density and its application in meshless methods. Meshfree Methods for Partial Differential Equations. 2003. Berlin, Germany: Springer:267‐279. · Zbl 1012.65121
[42] TimoshenkoSP, GoodierJN. Theory of Elasticity. 3rd ed. New York, NY: McGraw; 1970. · Zbl 0266.73008
[43] NowellD, HillsDA, SackfieldA. Contact of dissimilar elastic cylinders under normal and tangential loading. J Mech Phys Solids. 1988;36:59‐75. · Zbl 0631.73097
[44] HillsDA, NowellD. Mechanics of Fretting Fatigue. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1994. · Zbl 0857.73003
[45] LaursenTA. Computational Contact and Impact Mechanics. Berlin, Germany:Springer; 2002. · Zbl 0996.74003
[46] WriggersP. Computational Contact Mechanics. 2nd ed. Berlin, Germany: Springer; 2006. · Zbl 1104.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.