×

Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals. (English) Zbl 1419.74003

Summary: To prevent a sheet specimen from buckling subjected to a tension-compression cyclic loading, a new fixture has been developed to use with a regular tensile-compression machine. The novelty of this device lies in 4-block wedge design with pre-loaded springs. This design allows blocks to freely move in the vertical direction while providing the normal support to the entire length of the specimen during the tension-compression cycle. The entire test is easy to setup, which is another advantage of this design. In order to measure the strain accurately, the transmission type laser extensometer was utilized together with the implementation of double-side fins in the specimen. Experimental results of tension-compression tests are presented followed by a review of existing testing methods. In order to describe the accurate cyclic tension-compression behavior, the combined isotropic-kinematic hardening law based on the modified Chaboche model and the practical two-surface model based on Dafalias-Popov and Krieg models have been modified in this work, considering the permanent softening behavior during reverse loading and the non-symmetric behavior during reloading. Through tension-compression tests, the material characterization has been performed for three base materials, BH180, DP600 steels and AA6111-T4 sheets.

MSC:

74-05 Experimental work for problems pertaining to mechanics of deformable solids
74M05 Control, switches and devices (“smart materials”) in solid mechanics
Full Text: DOI

References:

[1] Abel, A.; Ham, R. K.: The cyclic behavior of crystals of aluminum-4 weight percent copper: I bauschinger effect, Acta. metall. 14, 1489 (1966)
[2] Anand, L.; Kalindindi, S. R.: The process of shear band formation in plane strain compression of FCC metals: efforts of crystallographic texture, Mech. mater. 17, 223 (1994)
[3] Balakrishnan, V., 1999. Measurement of in-plane Bauschinger effect in metal sheets. M.S. Thesis. The Ohio State University, Columbus, OH.
[4] Barlat, F.; Brem, J. C.; Yoon, J. W.; Chung, K.; Dick, R. E.; Choi, S. -H.; Pourboghrat, F.; Chu, E.; Lege, D. J.: Plane stress yield function for aluminum alloy sheets – part I. Theory, Int. J. Plast. 19, 1297 (2003) · Zbl 1114.74370 · doi:10.1016/S0749-6419(02)00019-0
[5] Barlat, F.; Duarte, J. M. F.; Gracio, J. J.; Lopes, A. B.; Rauch, E. F.: Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample, Int. J. Plast. 19, 1215 (2003) · Zbl 1134.74346 · doi:10.1016/S0749-6419(02)00020-7
[6] Bate, P. S.; Wilson, D. V.: Analysis of bauschinger effect, Acta. metall. 34, 1097 (1986)
[7] Bauschinger, J., 1886. On the change of the elastic limit and the strength of iron and steel, by drawing out, by heating and cooling, and by repetition of loading (summary). In: Minutes of Proceedings of the Institution of Civil engineers with Other Selected and Abstract Papers LXXXVII, p. 463.
[8] Bergström, J. S.; Jr., L. B. Hilbert: A constitutive model for predicting the large deformation thermomechanical behavior of fluoropolymers, Mech. mater. 37, 899 (2005)
[9] Boger, R. K.; Wagoner, R. H.; Barlat, F.; Lee, M. -G.; Chung, K.: Continuous, large strain, tension-compression testing of sheet material, Int. J. Plast. 21, 2319 (2005) · Zbl 1101.74300 · doi:10.1016/j.ijplas.2004.12.002
[10] Chaboche, J. L.: Time independent constitutive theories for cyclic plasticity, Int. J. Plast. 2, 149 (1986) · Zbl 0612.73038 · doi:10.1016/0749-6419(86)90010-0
[11] Chaboche, J. L.; Rousselier, G.: On the plastic and viscoplastic constitutive equations, parts I and II, ASME J. Pressure vessel technol. 105, 153 (1983)
[12] Chen, Z.; Maekawa, S.; Takeda, T.: Bauschinger effect and multiaxial yield behavior of stress-reverse mild steel, Metall. mater. Trans. A 30, 3069 (1999)
[13] Cheng, H.S., Lee, W., Cao, J., Seniw, M., Wang, H.-P., Chung, K., 2007. Experimental and numerical investigation of kinematic hardening behavior in sheet metals. In: Cuero, E., Chinesta, F. (Eds.), Proceedings of ESAFORM 2007, p. 337. · Zbl 1419.74003
[14] Chung, K.; Lee, M. -G.; Kim, D.; Kim, C.; Wenner, M. L.; Barlat, F.: Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions, part I: Theory and formulation, Int. J. Plast. 21, 861 (2005) · Zbl 1161.74331 · doi:10.1016/j.ijplas.2004.05.016
[15] Dafalias, Y. F.; Popov, E. P.: Plastic internal variables formalism of cyclic plasticity, ASME J. Appl. mech. 43, 645 (1976) · Zbl 0351.73048 · doi:10.1115/1.3423948
[16] Geng, L.; Wagoner, R. H.: Role of plastic anisotropy and its evolution on springback, Int. J. Mech. sci. 44, 123 (2002) · Zbl 0986.74506 · doi:10.1016/S0020-7403(01)00085-6
[17] Hill, R.: A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. lond. A 193, 281 (1948) · Zbl 0032.08805 · doi:10.1098/rspa.1948.0045
[18] Khan, A. S.; Jackson, K. M.: On the evolution of isotropic and kinematic hardening with finite plastic deformation, part I: Compression/tension loading of OFHC copper cylinders, Int. J. Plast. 15, 1265 (1999) · Zbl 0955.74501 · doi:10.1016/S0749-6419(99)00037-6
[19] Khan, A. S.; Zhang, H.: Finite deformation of a polymer: experiments and modeling, Int. J. Plast. 17, 851 (2001) · Zbl 1097.74501 · doi:10.1016/S0749-6419(00)00073-5
[20] Kim, J.; Lee, W.; Kim, D.; Kong, J.; Kim, C.; Wenner, M. L.; Chung, K.: Effect of hardening laws and yield function types on spring-back simulations dual-phase steel automotive sheets, Met. mater. Int. 12, 293 (2006)
[21] Krieg, R. D.: A practical two surface plasticity theory, ASME J. Appl. mech. 42, 641 (1975)
[22] Kuwabara, T., 2005. Advances of plasticity experiments on metal sheets and tubes and their applications to constitutive modeling. In: Smith, L.M. et al. (Eds.), Proceedings of NUMISHEET 2005, p. 20.
[23] Lee, M. -G.; Kim, D.; Kim, C.; Wenner, M. L.; Wagoner, R. H.; Chung, K.: Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions, part II: Characterization of material properties, Int. J. Plast. 21, 883 (2005) · Zbl 1161.74340 · doi:10.1016/j.ijplas.2004.05.015
[24] Lee, M. -G.; Kim, D.; Kim, C.; Wenner, M. L.; Wagoner, R. H.; Chung, K.: A practical two-surface plasticity model and its application to spring-back prediction, Int. J. Plast. 23, 1189 (2007) · Zbl 1294.74018
[25] Lee, M. -G.; Wagoner, R. H.; Lee, J. K.; Chung, K.; Kim, H. Y.: Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets, Int. J. Plast. 24, 545 (2007) · Zbl 1214.74004 · doi:10.1016/j.ijplas.2007.05.004
[26] Lee, W., Kim, J., Kim, D., Kim, C., Wenner, M.L., Okamoto, K., Wagoner, R.H., Chung, K., 2006. Formability evaluation of automotive friction stir welded TWB sheets. In: Khan, A.S., Kazmi, R. (Eds.), Proceedings of Plasticity 2006, p. 19. · Zbl 1193.74099
[27] Lou, X. Y.; Li, M.; Boger, R. K.; Agnew, S. R.; Wagoner, R. H.: Hardening evolution of AZ31B mg sheet, Int. J. Plast. 23, 44 (2007) · Zbl 1331.74007
[28] Mcdowell, D. L.: A two surface model for transient nonproportional cyclic plasticity: part 1 development of appropriate equations, ASME J. Appl. mech. 52, 298 (1985) · Zbl 0571.73038 · doi:10.1115/1.3169044
[29] Mroz, Z.: On the description of anisotropic workhardening, J. mech. Phys. solids 15, 163 (1967) · Zbl 0147.43702
[30] Prager, W.: A new method of analyzing stresses and strains in work-hardening plastic solids, ASME J. Appl. mech. 23, 493 (1956) · Zbl 0074.41003
[31] Rae, P. J.; Dattelbaum, D. M.: The properties of \(poly(tetrafluoroethylene)\) (PTFE) in compression, Polymer 45, 7615 (2004)
[32] Rae, P. J.; Brown, E. N.: The properties of \(poly(tetrafluoroethylene)\) (PTFE) in tension, Polymer 46, 8128 (2005)
[33] Ramberg, W.; Miller, J. A.: Determination and presentation of compressive stress – strain data for thin sheet metal, J. aeronaut. Sci. 13, 569 (1946)
[34] Tan, Z.; Magnusson, C.; Persson, B.: The bauschinger effect in compression-tension of sheet materials, Mater. sci. Eng. A 183, 31 (1994)
[35] Wagoner, R. H.; Lou, X. Y.; Li, M.; Agnew, S. R.: Forming behavior of magnesium sheet, J. mater. Process. technol. 177, 483 (2006)
[36] Wenner, M.L., 2005. Overview – simulation of sheet metal forming. In: Smith, L.M. et al. (Eds.), Proceedings of NUMISHEET 2005, p. 3.
[37] Widmark, M.; Melander, A.; Meurling, F.: Low cycle constant amplitude fully reversed strain controlled testing of low carbon and stainless sheet steels for simulation of straightening operations, Int. J. Fatigue 22, 307 (2000)
[38] Yoshida, F.; Uemori, T.: A model of large-strain cycle plasticity describing the bauschinger effect and workhardening stagnation, Int. J. Plast. 18, 661 (2002) · Zbl 1038.74013 · doi:10.1016/S0749-6419(01)00050-X
[39] Yoshida, F.; Uemori, T.; Fujiwara, K.: Elastic – plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain, Int. J. Plast. 18, 633 (2002) · Zbl 0995.74502 · doi:10.1016/S0749-6419(01)00049-3
[40] Ziegler, H.: A modification of Prager’s hardening rule, Quart. appl. Math. 17, 55 (1959) · Zbl 0086.18704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.