×

Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals. (English) Zbl 1144.74309

Summary: Yield functions describing the anisotropic behavior of textured metals are proposed. These yield functions are extensions to orthotropy of the isotropic yield function proposed by O. Cazacu et al. [Int. J. Plast. 22, No. 7, 1171–1194 (2006; Zbl 1090.74015)]. Anisotropy is introduced using linear transformations of the stress deviator. It is shown that the proposed anisotropic yield functions represent with great accuracy both the tensile and compressive anisotropy in yield stresses and \(r\)-values of materials with hcp crystal structure and of metal sheets with cubic crystal structure. Furthermore, it is demonstrated that the proposed formulations can describe very accurately the anisotropic behavior of metal sheets whose tensile and compressive stresses are equal.
It was shown that the accuracy in the description of the details of the flow and \(r\)-values anisotropy in both tension and compression can be further increased if more than two linear transformations are included in the formulation. If the in-plane anisotropy of the sheet in tension and compression is not very strong, the yield criterion CPB06ex2 provides a very good description of the main trends.

MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type

Citations:

Zbl 1090.74015
Full Text: DOI

References:

[1] Barlat, F.; Lege, D. J.; Brem, J. C.: A six-component yield function for anisotropic materials, Int. J. Plasticity 7, 693-712 (1991)
[2] Barlat, F.; Becker, R. C.; Hayashida, Y.; Maeda, Y.; Yanagawa, M.; Chung, K.; Brem, J. C.; Lege, D. J.; Matsui, K.; Murtha, S. J.; Hattori, S.: Yielding description of solution strengthened aluminum alloys, Int. J. Plasticity 13, 185-401 (1997)
[3] Barlat, F.; Brem, J. C.; Yoon, J. W.; Chung, K.; Dick, R. E.; Lege, D. J.; Pourboghrat, F.; Choi, S. -H.; Chu, E.: Plane stress yield function for aluminum alloy sheet – part I: Theory, Int. J. Plasticity 19, 1297-1319 (2003) · Zbl 1114.74370 · doi:10.1016/S0749-6419(02)00019-0
[4] Barlat, F.; Aretz, H.; Yoon, J. W.; Karabin, M. E.; Brem, J. C.; Dick, R. E.: Linear transformation-based anisotropic yield functions, Int. J. Plasticity 21, 1009-1039 (2005) · Zbl 1161.74328 · doi:10.1016/j.ijplas.2004.06.004
[5] Barlat, F.; Yoon, J. W.; Cazacu, O.: On linear transformation based anisotropic yield functions, Int.j. plasticity 23, 876-896 (2006) · Zbl 1359.74014
[6] Benzerga, A. A.; Besson, J.; Pineau, A.: Anisotropic fracture part I: Experiments, Acta mater. 52, 4623-4638 (2004)
[7] Bron, F.; Besson, J.: A yield function for anisotropic materials. Application to aluminum alloys, Int. J. Plasticity 20, 937-963 (2004) · Zbl 1254.74105
[8] Cazacu, O.; Barlat, F.: Generalization of Drucker’s yield criterion to orthotropy, Math. mech. Solids 6, 613-630 (2001) · Zbl 1128.74303 · doi:10.1177/108128650100600603
[9] Cazacu, O.; Barlat, F.: Application of representation theory to describe yielding of anisotropic aluminium alloys, Int. J. Eng. sci. 41, 1367-1385 (2003)
[10] Cazacu, O.; Barlat, F.: A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plasticity 20, 2027-2045 (2004) · Zbl 1107.74006 · doi:10.1016/j.ijplas.2003.11.021
[11] Cazacu, O.; Plunkett, B.; Barlat, F.: Orthotropic yield criterion for hexagonal close packed metals, Int. J. Plasticity 22, 1171-1194 (2006) · Zbl 1090.74015 · doi:10.1016/j.ijplas.2005.06.001
[12] Hill, R.: A theory of yielding and plastic flow of anisotropic metals, Proc. roy. Soc. London 193, 281-297 (1948) · Zbl 0032.08805 · doi:10.1098/rspa.1948.0045
[13] Hosford, W. F.: Texture strengthening, Metals eng. Quart. 6, 13-19 (1966)
[14] Hosford, W. F.; Allen, T. J.: Twining and directional slip as a cause for strength differential effect, Met. trans. 4, 1424-1425 (1973)
[15] Hu, W.: An orthotropic yield criterion in a 3-D general stress state, Int. J. Plasticity 21, 1771-1796 (2005) · Zbl 1114.74373 · doi:10.1016/j.ijplas.2004.11.004
[16] Kelley, E. W.; Hosford, W. F.: Deformation characteristics of textured magnesium, Trans. TMS-AIME 242, 654-661 (1968)
[17] Lebensohn, R. A.; Tomé, C. N.: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta metall. Mater. 41, 2611 (1993)
[18] Lee, D.; Backofen, W. A.: An experimental determination of the yield locus for titanium and titanium-alloy sheet, Tms-aime 236, 1077-1084 (1966)
[19] Liu, C.; Huang, Y.; Stout, M. G.: On the asymmetric yield surface of plastically orthotropic materials: a phenomenological study, Acta mater. 45, 2397-2406 (1997)
[20] Lou, X. Y.; Li, M.; Boger, R. K.; Agnew, S. R.; Wagoner, R. H.: Hardening evolution of AZ31B mg sheet, Int. J. Plasticity 23, 44-86 (2007) · Zbl 1331.74007
[21] Plunkett, B.; Lebensohn, R. A.; Cazacu, O.; Barlat, F.: Evolving yield function of hexagonal materials taking into account texture development and anisotropic hardening, Acta mater. 54, 4159-4169 (2006)
[22] Spitzig, R. J.; Richmond, O.: The effect of pressure on the flow stress of metals, Acta metall. 32, 457-463 (1984)
[23] Wang, C. C.: A new representation theorem for isotropic functions, part I and II, Arch. rat. Mech. an. 36, 166-223 (1970)
[24] Yoon, J. W.; Barlat, F.; Chung, K.; Pourboghrat, F.; Yang, D. Y.: Earing predictions based on asymmetric nonquadratic yield function, Int. J. Plasticity 16, 1075-1104 (2000) · Zbl 0986.74015 · doi:10.1016/S0749-6419(99)00086-8
[25] &zdot, M.; Yczkowski: Combined loadings in the theory of plasticity, (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.