×

Experimental characterization and elasto-plastic modeling of the quasi-static mechanical response of TA-6 V at room temperature. (English) Zbl 1236.74004

Summary: The paper presents an experimental study of the quasi-static deformation behavior of a TA-6 V in sheet form. To quantify the plastic anisotropy and the tension-compression asymmetry of this material at room temperature, monotonic tensile and compressive tests were carried out on specimens cut out along several orientations in the plane of the sheet. It was observed that although the tensile flow stress anisotropy is very mild, the Lankford coefficients’ anisotropy is very pronounced. To describe the observed mechanical response an elastic/plastic approach was used. Yielding was described using a family of yield criteria that account for strength differential effects and allow an improved description of the anisotropy and its evolution through multiple linear transformations. Comparisons between uniaxial monotonic data and FE simulations using the model show a very good agreement.

MSC:

74-05 Experimental work for problems pertaining to mechanics of deformable solids
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
Full Text: DOI

References:

[1] , Materials properties handbook: titanium alloys (1994)
[2] Castagne, S.; Remy, M.; Habraken, A. M.: Development of a mesoscopic cell modeling the damage process in steel at elevated temperature, Engneering mathematics 223 – 236, 145-150 (2003)
[3] Castagne, S.; Pascon, F.; Bles, G.; Habraken, A. M.: Developments in finite element simulations of continuous casting, J. phys. IV 120, 447-455 (2004)
[4] Cazacu, O.; Barlat, F.: Application of representation theory to describe yielding of anisotropic aluminum alloys, Int. J. Eng. sci. 41, 1367-1385 (2003)
[5] Cazacu, O.; Barlat, F.: A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plast. 20, 2027-2045 (2004) · Zbl 1107.74006 · doi:10.1016/j.ijplas.2003.11.021
[6] Cazacu, O.; Plunkett, B.; Barlat, F.: Orthotropic yield criterion for hexagonal closed packed metals, Int. J. Plast. 22, 1171-1194 (2006) · Zbl 1090.74015 · doi:10.1016/j.ijplas.2005.06.001
[7] Cescotto, S.; Charlier, R.: Frictional contact finite element based on mixed variational principles, Int. J. Numer. methods eng. 36, 1681-1701 (1993) · Zbl 0772.73073 · doi:10.1002/nme.1620361005
[8] Duchêne, L.; Godinas, A.; Cescotto, S.; Habraken, A. M.: Texture evolution during deep-drawing processes, J. mater. Process. technol., 110-118 (2002)
[9] Duchêne, L., de Montleau, P., El Houdaigui, F., Bouvier, S., Habraken, A.M., 2005. Analysis of texture evolution and hardening behavior during deep drawing with an improved mixed type FEM element. In: Smith, L.M., Pourboghrat, F., Yoon, J-W., Stoughton, T.B. (Eds.), Proceedings of International Conference on NUMISHEET 2005, Melville, New York, vol. 1, pp. 409 – 414.
[10] Duchêne, L.; Lelotte, T.; Flores, P.; Bouvier, S.; Habraken, A. M.: Rotation of axes for anisotropic metal in FEM simulations, Int. J. Plast. 24, 397-427 (2008) · Zbl 1152.74009 · doi:10.1016/j.ijplas.2007.03.015
[11] Ertürk, S., 2009. Thermo-Mechanical Modelling and Simulation of Magnesium Alloys during Extrusion Process. Ph.D. dissertation, Christian-Albrechts-Universität, Kiel, Germany.
[12] Ferron, G.; Makkouk, R.; Morreale, J.: A parametric description of orthotropic plasticity in metal sheets, Int. J. Plast. 10, 431-449 (1994) · Zbl 0809.73028 · doi:10.1016/0749-6419(94)90008-6
[13] Haddadi, H.; Bouvier, S.; Banu, M.; Maier, C.; Teodosiu, C.: Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: modelling, numerical analysis and identification, Int. J. Plast. 22, 2226-2271 (2006) · Zbl 1230.74051 · doi:10.1016/j.ijplas.2006.03.010
[14] Habraken, A. M.; Cescotto, S.: An automatic remeshing technique for finite element simulation of forging processes, Int. J. Numer. methods eng. 30, 1503-1525 (1990)
[15] Habraken, A. M.; Cescotto, S.: Contact between deformable solids, the fully coupled approach, Math. comput. Modell. 28, No. 4-8, 153-169 (1998)
[16] Habraken, A. M.; Duchêne, L.: Anisotropic elasto-plastic finite element analysis using a stress-strain interpolation method based on a polycrystalline model, Int. J. Plast. 20, 1525-1560 (2004) · Zbl 1126.74346 · doi:10.1016/j.ijplas.2003.11.006
[17] Habraken, A. M.; Charles, J. F.; Wegria, J.; Cescotto, S.: Dynamic recrystallization during zinc rolling, Int. J. Form. process. 1, 1-20 (1998)
[18] Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57, 97-109 (1970) · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[19] Hill, R.: A theory of the yielding and plastic flow of anisotropic materials, Proc. royal. Soc. lond. A 193, 281-297 (1948) · Zbl 0032.08805 · doi:10.1098/rspa.1948.0045
[20] Hill, R.: Constitutive dual potentials in classical plasticity, J. mech. Phys. solids 35, 23-33 (1987) · Zbl 0598.73028 · doi:10.1016/0022-5096(87)90025-1
[21] Jones, P.; Hutchinson, W. B.: Stress-state dependence of slip in titanium-6Al-4V and other H, C.P. metals. Acta metall. Mater. 29, 951-968 (1981)
[22] Karafillis, A. P.; Boyce, M. C.: A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. mech. Phys. solids 41, 1859-1886 (1993) · Zbl 0792.73029 · doi:10.1016/0022-5096(93)90073-O
[23] Khan, A. S.; Kazmi, R.; Farroch, B.: Multiaxial and non-proportional loading responses, anisotropy and modeling of ti-6Al-4V titanium alloy over wide ranges of strain rates and temperatures, Int. J. Plast. 23, 931-950 (2007) · Zbl 1148.74304 · doi:10.1016/j.ijplas.2006.08.006
[24] Khan, A. S.; Suh, Y. S.; Kazmi, R.: Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys, Int. J. Plast. 20, 2233-2248 (2004) · Zbl 1135.74300 · doi:10.1016/j.ijplas.2003.06.005
[25] Kuwabara, T., Katami, C., Kikuchi, M., Shindo, T., Ohwue, T., 2001. Cup drawing of pure titanium sheet – finite element analysis and experimental validation. In: Proceedings of the 7th International Conference on Numerical Methods in Industrial Forming Processes, Toyohashi, Japan, pp. 781 – 787.
[26] Kuwabara, T., Morita, Y., Miyashita, Y., Takahashi, S., 1995. Elastic – plastic behavior of sheet metal subjected to in-plane reverse loading. In: Proceedings of Plasticity ’95, pp. 841 – 844.
[27] Kuwabara, T.; Saito, R.; Hirano, T.; Oohashi, N.: Difference in tensile and compressive flow stresses in austenitic stainless steel alloys and its effect on springback behavior, Int. J. Mater. form. 2, 499-502 (2009)
[28] Levkovitch, V., Svendsen, B., 2007. Accurate hardening modeling as basis for the realistic simulation of sheet forming processes with complex strain path changes. In: Onate, E., Owen, D.R.J., Suarez, B. (Eds.), Computational Plasticity IX. Fundamentals and Applications, Barcelona, Spain, pp. 608 – 611.
[29] Lou, X. Y.; Li, M.; Boger, R. K.; Agnew, S. R.; Wagoner, R. H.: Hardening evolution of AZ31B mg sheet, Int. J. Plast. 23, 44-86 (2007) · Zbl 1331.74007
[30] Lütjering, G.; Williams, J. C.: Titanium, (2007)
[31] Majorell, A.; Srivatsa, S.; Picu, R. C.: Mechanical behavior of ti-6Al-4V at high and moderate temperatures – part I: Experimental results, Mat. sci. Eng. A 326, 297-305 (2002)
[32] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E.: Equation of state calculations by fast computing machines, J. chem. Phys. 21, 1087-1092 (1953)
[33] Nixon, M. E.; Cazacu, O.; Lebensohn, R. A.: Anisotropic response of high-purity \(\alpha \)-titanium: experimental characterization and constitutive modeling, Int. J. Plast. 26, 516-532 (2010) · Zbl 1426.74052
[34] Peirs, J.; Verleysen, P.; Degrieck, J.; Coghe, F.: The use of hat-shaped specimens to study the high strain rate shear behaviour of ti-6Al-4V, Int. J. Impact eng. 37, 703-714 (2010)
[35] Picu, R. C.; Majorell, A.: Mechanical behavior of ti-6Al-4V at high and moderate temperatures – part II: Constitutive modeling, Mat. sci. Eng. A 326, 306-316 (2002)
[36] Plunkett, B.; Cazacu, O.; Lebensohn, R. A.; Barlat, F.: Evolving yield function of hexagonal materials taking into account texture development and anisotropic hardening, Acta mater. 54, 4159-4169 (2006)
[37] Plunkett, B.; Cazacu, O.; Barlat, F.: Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals, Int. J. Plast. 24, 847-866 (2008) · Zbl 1144.74309 · doi:10.1016/j.ijplas.2007.07.013
[38] Rabahallah, M.; Balan, T.; Bouvie, S.; Bacroix, B.; Barlat, F.; Chung, K.; Teodosiu, C.: Parameter identification of advanced plastic strain rate potentials and impact on plastic anisotropy prediction, Int. J. Plast. 25, 491-512 (2009) · Zbl 1157.74007 · doi:10.1016/j.ijplas.2008.03.006
[39] Salem, A. A.; Semiatin, S. L.: Anisotropy of the hot plastic deformation of ti-6Al-4V single-colony samples, Mat. sci. Eng. A 508, 114-120 (2009)
[40] Tirry, W.; Coghe, F.; Bouvier, S.; Gasperini, M.; Rabet, L.; Schryvers, D.: A multi-scale characterization of deformation twins in ti6al4v sheet material deformed by simple shear, Mat. sci. Eng. A 527, 4136-4145 (2010)
[41] Zhu, Y. Y.; Cescotto, S.: Transient thermal and thermomechanical analysis by FEM, Comput. struct. 53, 275-304 (1994) · Zbl 0900.73743 · doi:10.1016/0045-7949(94)90202-X
[42] Zhu, Y. Y.; Cescotto, S.: Unified and mixed formulation of the 4-node quadrilateral elements by assumed strain method: application to thermomechanical problems, Int. J. Numer. methods eng. 38, 685-716 (1995) · Zbl 0823.73074 · doi:10.1002/nme.1620380411
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.