×

Interpolation-based anisotropic yield and hardening models. (English) Zbl 1473.74017

Summary: In this paper, an interpolation-based anisotropic yield model and a corresponding anisotropic hardening model are proposed. The proposed yield model is an improvement on H. Vegter and A. H. van den Boogaard’s yield model [Int. J. Plast. 22, No. 3, 557–580 (2006; Zbl 1138.74303)]. By introducing shape parameters into Bézier basis function to control the curvature of the curve, the number of interpolation curve segments is effectively reduced. The proposed yield model has very good material applicability (suitable for BCC, FCC, HCP materials) and can directly generate the tricomponent yield surface without any numerical fitting. In addition to being applied to capture tension-compression asymmetry, the model can also be extended to describe non-orthotropy, which is usually not realized by existing yield criteria. Based on the proposed yield model, a hardening model based on characteristic yield points tracking is proposed. The so-called characteristic yield points correspond to the uniaxial loading and equi-biaxial loading yield points for constructing the yield surface. By tracking the evolution curve of yield data (stress and \(r\)-value) with specific variables (e.g. equivalent plastic strain), the yield surface at different variable levels can be continuously predicted. The proposed hardening model can not only predict the evolution of yield surface with equivalent plastic strain under proportional loading, but also predict the effects of different pre-strains and preloading paths on yield surface, and can also couple other variables (e.g. strain rate) to comprehensively consider the effects of multiple factors.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74E10 Anisotropy in solid mechanics
74A20 Theory of constitutive functions in solid mechanics

Citations:

Zbl 1138.74303
Full Text: DOI

References:

[1] Aamaishi, T.; Tsutamori, H.; Iizuka, E., Plane stress yield function described by 3rd-degree spline curve and its application, J. Phys.: Conf. Ser., 734, Article 032067 pp. (2016)
[2] Abedini, A.; Butcher, C.; Nemcko, M. J.; Kurukuri, S.; Worswick, M. J., Constitutive characterization of a rare-earth magnesium alloy sheet (ZEK100-O) in shear loading: studies of anisotropy and rate sensitivity, Int. J. Mech. Sci., 128, 54-69 (2017)
[3] Abedini, A.; Butcher, C.; Rahmaan, T.; Worswick, M. J., Evaluation and calibration of anisotropic yield criteria in shear Loading: constraints to eliminate numerical artefacts, Int. J. Solid Struct., 151, 118-134 (2018)
[4] Andar, M. O.; Kuwabara, T.; Steglich, D., Material modeling of AZ31 Mg sheet considering variation of r-values and asymmetry of the yield locus, Mater. Sci. Eng., 549, 82-92 (2012)
[5] Aretz, H., Applications of a new plane stress yield function to orthotropic steel and aluminum sheet metals, Model. Simulat. Mater. Sci. Eng., 12, 491-509 (2004)
[6] Aretz, H., A simple isotropic-distortional hardening model and its application in elastic-plastic analysis of localized necking in orthotropic sheet metals, Int. J. Plast., 24, 1457-1480 (2008) · Zbl 1140.74412
[7] Barlat, F.; Lian, J., Plastic behavior and stretch ability of sheet metals. Part I: a yield function for orthotropic sheets under plane-stress conditions, Int. J. Plast., 5, 51-66 (1989)
[8] Barlat, F.; Brem, J. C.; Yoon, J. W., Plane stress yield function for aluminum alloy sheets-Part 1: theory, Int. J. Plast., 19, 1297-1319 (2003) · Zbl 1114.74370
[9] Barlat, F.; Aretz, H.; Yoon, J. W., Linear transformation-based anisotropic yield functions, Int. J. Plast., 21, 1009-1039 (2005) · Zbl 1161.74328
[10] Barlat, F.; Ha, J.; Grácio, J. J.; Lee, M. G.; Rauch, E. F.; Vincze, G., An alternative to kinematic hardening in classical plasticity, Int. J. Plast., 27, 1309-1327 (2011) · Zbl 1400.74010
[11] Benzerga, A. A.; Besson, J.; Pineau, A., Anisotropic fracture Part I: experiments, Acta Mater., 52, 4623-4638 (2004)
[12] Cazacu, O.; Barlat, F., A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plast., 20, 2027-2045 (2004) · Zbl 1107.74006
[13] Cazacu, O.; Plunkett, B.; Barlat, F., Orthotropic yield criterion for hexagonal closed packed metals, Int. J. Plast., 22, 1171-1194 (2006) · Zbl 1090.74015
[14] Cazacu, O., New expressions and calibration strategies for Karafillis and Boyce (1993) yield criterion, Int. J. Solid Struct., 185, 410-422 (2020)
[15] Ertürk, S.; Steglich, D.; Bohlen, J.; Letzig, D.; Brocks, W., Thermo-mechanical modelling of indirect extrusion process for magnesium alloys, Int. J. Material Form., 2, 49-52 (2009)
[16] François, M., A plasticity model with yield surface distortion for non proportional loading, Int. J. Plast., 17, 703-717 (2001) · Zbl 0978.74513
[17] Gao, X.; Zhang, T.; Zhou, J.; Graham, S. T.; Hayden, M.; Roe, C., On stress-state dependent plasticity modeling: significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule, Int. J. Plast., 27, 217-231 (2011)
[18] Hao, S.; Dong, X., Interpolation-based plane stress anisotropic yield models, Int. J. Mech. Sci., 105612 (2020)
[19] Hill, R., A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. Lond. A, 193, 281-297 (1948) · Zbl 0032.08805
[20] Hockett, J.; Sherby, O., Large strain deformation of polycrystalline metals at low homologous temperatures, J. Mech. Phys. Solid., 23, 87-98 (1975)
[21] Hosford, W. F., A generalized isotropic yield criterion, J. Appl. Mech. Trans., 39, 607-609 (1972)
[22] Hou, Y.; Min, J.; Guo, N.; Lin, J.; Carsley, J. E.; Stoughton, T. B.; Tekkaya, A. E., Investigation of evolving yield surfaces of dual-phase steels, J. Mater. Process. Technol., 116314 (2019)
[23] Hu, W. L., An orthotropic yield criterion in a 3-D general stress state, Int. J. Plast., 21, 1771-1796 (2005) · Zbl 1114.74373
[24] Hu, W. L., Constitutive modeling of orthotropic sheet metals by presenting hardening-induced anisotropy, Int. J. Plast., 23, 620-639 (2007) · Zbl 1110.74017
[25] Hu, Q.; Li, X.; Han, X.; Li, H.; Chen, J., A normalized stress invariant-based yield criterion: modeling and validation, Int. J. Plast., 99, 248-273 (2017)
[26] Karafillis, A. P.; Boyce, M. C., A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. Mech. Phys. Solid., 41, 1859-1886 (1993) · Zbl 0792.73029
[27] Khan, A. S.; Kazmi, R.; Pandey, A.; Stoughton, T., Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part-I: a very low work hardening aluminum alloy (Al6061-T6511), Int. J. Plast., 25, 1611-1625 (2009)
[28] Khan, A. S.; Pandey, A.; Stoughton, T., Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part II: a very high work hardening aluminum alloy (annealed 1100 Al), Int. J. Plast., 26, 1421-1431 (2010) · Zbl 1427.74002
[29] Khan, A. S.; Pandey, A.; Stoughton, T., Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part III: yield surface in tension-tension stress space (Al 6061-T 6511 and annealed 1100 Al), Int. J. Plast., 26, 1432-1441 (2010) · Zbl 1427.74003
[30] Khan, A. S.; Pandey, A.; Gnäupel-Herold, T.; Mishra, R. K., Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures, Int. J. Plast., 27, 688-706 (2011) · Zbl 1426.74013
[31] Kuwabara, T.; Ikeda, S.; Kuroda, K., Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension, J. Mater. Process. Technol., 80-81, 517-523 (1998)
[32] Kuwabara, T.; Kurita, K., Measurement of plastic deformation characteristics of 6000-type sheet aluminum alloy under biaxial tension and verification of yield criteria, J. Jpn. Inst. Light Metals, 50, 2-6 (2000)
[33] Kurukuri, S.; Worswick, M. J.; Ghaffari Tari, D.; Mishra, R. K.; Carter, J. T., Rate sensitivity and tension-compression asymmetry in AZ31B magnesium alloy sheet, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 372, Article 20130216 pp. (2014)
[34] Lee, E. H.; Stoughton, T. B.; Yoon, J. W., A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule, Int. J. Plast., 99, 120-143 (2017)
[35] Lee, E. H.; Choi, H.; Stoughton, T. B.; Yoon, J. W., Combined anisotropic and distortion hardening to describe directional response with Bauschinger effect, Int. J. Plast., 122, 73-88 (2019)
[36] Li, H.; Hu, X.; Yang, H.; Li, L., Anisotropic and asymmetrical yielding and its distorted evolution: modeling and applications, Int. J. Plast., 82, 127-158 (2016)
[37] Liao, J.; Xue, X.; Lee, M. G.; Barlat, F.; Vincze, G.; Pereira, A. B., Constitutive modeling for path-dependent behavior and its influence on twist springback, Int. J. Plast., 93, 64-88 (2017)
[38] Lou, X. Y.; Li, M.; Boger, R. K.; Agnew, S. R.; Wagoner, R. H., Hardening evolution of AZ31B Mg sheet, Int. J. Plast., 23, 44-86 (2007) · Zbl 1331.74007
[39] Lou, Y.; Yoon, J. W., Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion, Int. J. Plast., 101, 125-155 (2018)
[40] Peng, F.; Dong, X.; Tian, X., An interpolation-type orthotropic yield function and its application under biaxial tension, Int. J. Mech. Sci., 99, 89-97 (2015)
[41] Plunkett, B.; Cazacu, O.; Lebensohn, R. A.; Barlat, F., Elastic-viscoplastic anisotropic modeling of textured metals and validation using the Taylor cylinder impact test, Int. J. Plast., 23, 1001-1021 (2007) · Zbl 1123.74006
[42] Plunkett, B.; Cazacu, O.; Barlat, F., Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals, Int. J. Plast., 24, 847-866 (2008) · Zbl 1144.74309
[43] Park, N.; Stoughton, T. B.; Yoon, J. W., A criterion for general description of anisotropic hardening considering strength differential effect with non-associated flow rule, Int. J. Plast., 121, 76-100 (2019)
[44] Safaei, M.; Lee, M.-G.; Zang, S.; Waele, W. D., An evolutionary anisotropic model for sheet metals based on non-associated flow rule approach, Comput. Mater. Sci., 81, 15-29 (2014)
[45] Shi, B.; Peng, Y.; Yang, C.; Pan, F.; Cheng, R.; Peng, Q., Loading path dependent distortional hardening of Mg alloys: experimental investigation and constitutive modeling, Int. J. Plast., 90, 76-95 (2017)
[46] Stoughton, T. B.; Yoon, J. W., Anisotropic hardening and non-associated flow in proportional loading of sheet metals, Int. J. Plast., 25, 1777-1817 (2009) · Zbl 1168.74016
[47] Vegter, H.; Drent, P.; Huétink, J., A planar isotropic yield criterion based on mechanical testing at multi-axial stress states, (Shen, S.-F.; Dawson, P. R., Simulation of Materials Processing: Theory, Methods and Applications (1995), Balkema: Balkema Rotterdam), 345-350
[48] Vegter, H.; An, Y.; Pijlman, H. H.; Huétink, J., Different approaches to describe the plastic material behavior of steel and aluminum-alloys in sheet forming, (Covas, J. A., Proceedings of the 2nd ESAFORM Conference on Material Forming. Guimarães (1999)), 127-132
[49] Vegter, H.; van den Boogaard, A. H., A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states, Int. J. Plast., 22, 557-580 (2006) · Zbl 1138.74303
[50] Wang, H.; Wan, M.; Wu, X.; Yan, Y., The equivalent plastic strain-dependent Yld2000-2d yield function and the experimental verification, Comput. Mater. Sci., 47, 12-22 (2009)
[51] Wu, B.; Wang, H.; Taylor, T.; Yanagimoto, J., A non-associated constitutive model considering anisotropic hardening for orthotropic anisotropic materials in sheet metal forming, Int. J. Mech. Sci., 169, Article 105320 pp. (2020)
[52] Yang, C.; Shi, B.; Peng, Y.; Pan, F., Loading path dependent distortional hardening of Mg alloys: experimental investigation and constitutive modeling on cruciform specimens, Int. J. Mech. Sci., 160, 282-297 (2019)
[53] Yang, L.; Zeng, X. M., Bézier curves and surfaces with shape parameters, Int. J. Comput. Math., 86, 1253-1263 (2009) · Zbl 1169.65012
[54] Yoon, J. W.; Barlat, F.; Chung, K.; Pourboghrat, F.; Yang, D. Y., Earing predictions based on asymmetric nonquadratic yield function, Int. J. Plast., 16, 1075-1104 (2000) · Zbl 0986.74015
[55] Yoon, J. W.; Lou, Y.; Yoon, J.; Glazoff, M. V., Asymmetric yield function based on the stress invariants for pressure sensitive metals, Int. J. Plast., 56, 184-202 (2014)
[56] Yoon, J.; Cazacu, O.; Mishra, R. K., Constitutive modeling of AZ31 sheet alloy with application to axial crushing, Mater. Sci. Eng., 565, 203-212 (2013)
[57] Yoshida, F.; Hamasaki, H.; Uemori, T., Modeling of anisotropic hardening of sheet metals including description of the Bauschinger effect, Int. J. Plast., 75, 170-188 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.