×

Stress integration method for a nonlinear kinematic/isotropic hardening model and its characterization based on polycrystal plasticity. (English) Zbl 1168.74015

Summary: Sheet metal forming processes generally involve non-proportional strain paths including springback, leading to the Bauschinger effect, transient hardening, and permanent softening behavior, that can be possibly modeled by kinematic hardening laws. In this work, a stress integration procedure based on the backward-Euler method was newly derived for a nonlinear combined isotropic/kinematic hardening model based on the two-yield surface approach. The backward-Euler method can be combined with general non-quadratic anisotropic yield functions, and thus it can predict accurately the behavior of aluminum alloy sheets for sheet metal forming processes. In order to characterize the material coefficients, including the Bauschinger ratio for kinematic hardening model, one element tension-compression simulations were newly tried based on a polycrystal plasticity approach, which compensates extensive tension and compression experiments. The developed model was applied to a springback prediction of the NUMISHEET’93 2D draw bend benchmark example.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74E15 Crystalline structure
74S05 Finite element methods applied to problems in solid mechanics
74E10 Anisotropy in solid mechanics

Software:

MARC; MSC.MARC
Full Text: DOI

References:

[1] Amstrong, P.J., Frederick, C.O., 1966. A Mathematical Representation of the Multiaxial Bauschinger Effect. G.E.G.B. Report RD/B/N 731.
[2] De Sousa, R. J. Alves; Yoon, J. W.; Cardoso, R. P. R.; Valente, R. A. F.; Grácio, J. J.: On the use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations, International journal of plasticity 23, 490-515 (2007) · Zbl 1349.74314
[3] Barlat, F.; Lian, J.: Plastic behaviour and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions, International journal of plasticity 5, 51-66 (1989)
[4] Barlat, F.; Lege, D. J.; Brem, J. C.: A six-component yield function for anisotropic metals, International journal of plasticity 7, 693-712 (1991)
[5] Barlat, F.; Aretz, H.; Yoon, J. W.; Karabin, M. E.; Brem, J. C.; Dick, R. E.: Linear transformation based anisotropic yield functions, International journal of plasticity 21, 1009-1039 (2005) · Zbl 1161.74328 · doi:10.1016/j.ijplas.2004.06.004
[6] Barlat, F.; Brem, J. C.; Yoon, J. W.; Chung, K.; Dick, R. E.; Lege, D. J.; Pourboghrat, F.; Choi, S. H.; Chu, E.: Plane stress yield function for aluminum alloy sheets part 1: theory, International journal of plasticity 19, 1297 (2003) · Zbl 1114.74370 · doi:10.1016/S0749-6419(02)00019-0
[7] Braudel, H. J.; Abouaf, M.; Chenot, J. L.: An implicit and incremental formulation for the solution of elastoplastic problems by the finite element method, Computers and structures 22, 801-814 (1986) · Zbl 0578.73066 · doi:10.1016/0045-7949(86)90269-5
[8] Bron, F.; Besson, J.: A yield function for anisotropic materials. Application to aluminium alloys, International journal of plasticity 20, 937-963 (2004) · Zbl 1254.74105
[9] Cao, J.; Lee, W.; Cheng, H. S.; Seniw, M.; Wang, H. P.; Chung, K.: Experimental and numerical investigation of combined isotropic – kinematic hardening behavior of sheet metals, International journal of plasticity (2008) · Zbl 1419.74003
[10] Cardoso, R. P. R.; Yoon, J. W.; Grácio, J. J.; Barlat, F.; De Sá, J. M. A. César: Development of a one point quadrature shell element for nonlinear applications with contact and anisotropy, Computer methods in applied mechanics and engineering 191, 5177-5206 (2002) · Zbl 1083.74583 · doi:10.1016/S0045-7825(02)00455-3
[11] Cazacu, O.; Barlat, F.: Generalization of Drucker’s yield criterion to orthotropy, Mathematics and mechanics of solids 6, 613-630 (2001) · Zbl 1128.74303 · doi:10.1177/108128650100600603
[12] Cazacu, O.; Plunkett, B.; Barlat, F.: Orthotropic yield criterion for hexagonal closed packed metals, International journal of plasticity 22, No. 7, 1171-1194 (2006) · Zbl 1090.74015 · doi:10.1016/j.ijplas.2005.06.001
[13] Chaboche, J. L.: Time independent constitutive theories for cyclic plasticity, International journal of plasticity 2, 149 (1986) · Zbl 0612.73038 · doi:10.1016/0749-6419(86)90010-0
[14] Chaboche, J. L.: On the modifications of kinematic hardening to improve the description of ratchetting effects, International journal of plasticity 7, 661 (1991)
[15] Cheng, H. S.; Cao, J.; Xia, Z. C.: An accelerated springback compensation method, International journal of mechanical sciences 49, 267-279 (2007)
[16] Chung, K.; Richmond, O.: Ideal forming – I. Homogeneous deformation with minimum plastic work, International journal of mechanical sciences 34, 575-591 (1992) · Zbl 0765.73026 · doi:10.1016/0020-7403(92)90032-C
[17] Chung, K.; Richmond, O.: Ideal forming-II. Sheet forming with optimum deformation, International journal of mechanical sciences 34, 617-633 (1992) · Zbl 0765.73027 · doi:10.1016/0020-7403(92)90059-P
[18] Chung, K.; Richmond, O.: A deformation theory of plasticity based on minimum work paths, International journal of plasticity 9, 907-926 (1993) · Zbl 0793.73034 · doi:10.1016/0749-6419(93)90057-W
[19] Chung, K.; Lee, M. G.; Kim, D.; Kim, C.; Wenner, M. L.; Barlat, F.: Spring-back evaluation of automotive sheets based on isotropic – kinematic hardening laws and non-quadratic anisotropic yield functions. Part I: Theory and formulation, International journal of plasticity 21, 861-882 (2005) · Zbl 1161.74331 · doi:10.1016/j.ijplas.2004.05.016
[20] Dafalias, Y. F.; Popov, E. P.: Plastic internal variables formalism of cyclic plasticity, Journal of applied mechanics 98, 645-651 (1976) · Zbl 0351.73048 · doi:10.1115/1.3423948
[21] Dao, M.; Asaro, R. J.: Localized deformation modes and non-schmid effects in crystalline solids. Part I. Critical conditions of localization, Mechanics of materials 23, 71-102 (1996)
[22] Dawson, P.: Crystal plasticity, Continuum scale simulation of engineering materials – fundamentals – microstructures – process applications, 115-143 (2004)
[23] Duflou, J.; Habraken, A. M.: Model identification and FE simulations: effect of different yield loci and hardening laws in sheet forming, International journal of plasticity 23, 420-449 (2007) · Zbl 1359.74405
[24] Gambin, W.: Plasticity and texture, (2001)
[25] Geng, L.; Wagoner, R. H.: Role of plastic anisotropy and its evolution on springback, International journal of mechanical sciences 44, No. 1, 123-148 (2002) · Zbl 0986.74506 · doi:10.1016/S0020-7403(01)00085-6
[26] Germain, Y.; Chung, K.; Wagoner, R. H.: A rigid-viscoplastic finite element program for sheet metal forming analysis, International journal of mechanical sciences 31, 1-24 (1989)
[27] Haddag, B.; Balan, T.; Meraim, F. A.: Investigation of advanced strain-path dependent material models for sheet metal forming simulations, International journal of plasticity 23, 951-979 (2007) · Zbl 1148.74313 · doi:10.1016/j.ijplas.2006.10.004
[28] Hershey, A. V.: The plasticity of an isotropic aggregate of anisotropic face centered cubic crystals, Journal of applied mechanics transactions ASME 21, 241 (1954) · Zbl 0059.18802
[29] Hill, R.: A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the royal society of London 193, 281 (1948) · Zbl 0032.08805 · doi:10.1098/rspa.1948.0045
[30] Hill, R.: Stability of rigid-plastic solids, Journal of mechanics and physics of solids 6, 1-8 (1957) · Zbl 0080.18204 · doi:10.1016/0022-5096(57)90040-6
[31] Hill, R.: Extremal paths of plastic work and deformation, Journal of mechanics and physics of solids 34, 511-523 (1986) · Zbl 0589.73043 · doi:10.1016/0022-5096(86)90015-3
[32] Hosford, W. F.: A generalized isotropic yield criterion, Journal of applied mechanics transactions of ASME 39, 607 (1972)
[33] Karafillis, A. P.; Boyce, M. C.: A general anisotropic yield criterion using bonds and a transformation weighting tensor, Journal of mechanics and physics of solids 41, 1859-1886 (1993) · Zbl 0792.73029 · doi:10.1016/0022-5096(93)90073-O
[34] Khan, A. S.; Huang, S.: Continuum theory of plasticity, (1995) · Zbl 0856.73002
[35] Kocks, U. F.; Tomé, C. N.; Wenk, H. R.: Texture and anisotropy: preferred orientations in polycrystals and their effect on material properties, (1998) · Zbl 0916.73001
[36] Krieg, R. D.: A practical two surface plasticity theory, Journal of applied mechanics 42, 641 (1975)
[37] Lee, S. W.; Yang, D. Y.: An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process, Journal of materials processing technology 80 – 81, 60-67 (1998)
[38] Lee, M. G.; Kim, D.; Kim, C.; Wenner, M. L.; Wagoner, R. H.; Chung, K.: Spring-back evaluation of automotive sheets based on isotropic – kinematic hardening laws and non-quadratic anisotropic yield functions. Part II: Characterization of material properties, International journal of plasticity 21, 883-914 (2005) · Zbl 1161.74340 · doi:10.1016/j.ijplas.2004.05.015
[39] Lee, M. G.; Kim, D.; Kim, C.; Wenner, M. L.; Chung, K.: Spring-back evaluation of automotive sheets based on isotropic – kinematic hardening laws and non-quadratic anisotropic yield functions. Part III: Applications, International journal of plasticity 21, 915-953 (2005) · Zbl 1161.74339 · doi:10.1016/j.ijplas.2004.05.014
[40] Lee, M. G.; Kim, D.; Kim, C.; Wenner, M. L.; Wagoner, R. H.; Chung, K.: A practical two-surface plasticity model and its application to spring-back prediction, International journal of plasticity 23, 1189-1212 (2007) · Zbl 1294.74018
[41] Li, K.; Wagoner, R. H.: Simulation of springback, Simulation of materials processing, 21-32 (1998)
[42] Logan, R. W.; Hosford, W. F.: Upper-Bond anisotropic yield locus calculations assuming \(\langle 111\rangle \) pencil glide, International journal of mechanical sciences 22, 419 (1980)
[43] Mcdowell, D. L.: A two surface model for transient nonproportional cyclic plasticity. Part I: Development of appropriate equations, ASME journal of applied mechanics 52, 298 (1985) · Zbl 0571.73038 · doi:10.1115/1.3169044
[44] Mcdowell, D. L.: Evaluation of intersection conditions for two surface plasticity theory, International journal of plasticity 5, 29-50 (1989)
[45] Mrós, Z.: On the description of anisotropic work hardening, Journal of mechanics and physics solids 15, 163 (1967)
[46] MSC.Marc and MSC.Mentat, version 2005, Volume A: Theory and User Information and Volume B: Element Library, MSC.Software Corporation, Santa Ana, California, USA.
[47] Nadai, A.: Theory of flow and fracture of solids, Theory of flow and fracture of solids 2 (1963)
[48] Oliveira, M. C.; Alves, J. L.; Chaparro, B. M.; Menezes, L. F.: Study on the influence of work-hardening modeling in springback prediction, International journal of plasticity 23, 516-543 (2007) · Zbl 1349.74333
[49] Ortiz, M., Pinsky, P.M., 1981. Global analysis methods for the solution of elastoplastic and viscoplastic dynamic problems. Report UCB/SESM 81/08, Dept. Civil Eng., University of California, Berkley.
[50] Ortiz, M.; Pinsky, P. M.; Taylor, R. L.: Operator split methods for the numerical solution of the elastoplastic dynamic problem, Computer methods in applied mechanics and engineering 39, 137 (1983) · Zbl 0501.73077 · doi:10.1016/0045-7825(83)90018-X
[51] Ortiz, M.; Simo, J. C.: An analysis of a new class of integration algorithms for elastoplastic relations, International journal of numerical methods in engineering 23, 353 (1986) · Zbl 0585.73058 · doi:10.1002/nme.1620230303
[52] Pourboghrat, F.; Chu, E.: Prediction of spring-back and side-wall curl in 2-D draw bending, Journal of materials processing technology 50, No. 1 – 4, 361-374 (1995)
[53] Prager, W.: A new method of analyzing stresses and strains in work-hardening plastic solids, Journal of applied mechanics 23, 493 (1956) · Zbl 0074.41003
[54] Teodosiu, C., Hu, Z., 1998. Microstructure in the continuum modelling of plastic anisotropy. In: Proceedings of the 19th International Symposium on Materials Science: Modelling of Structure and Mechanics of Materials, Denmark.
[55] Tseng, N. T.; Lee, G. C.: Simple plasticity model of two surface type, ASCE journal of engineering mechanics 109, 795-810 (1983)
[56] Wagoner, R. H.: Sheet springback, Continuum scale simulation of engineering materials – fundamentals – microstructures – process applications, 777-794 (2004)
[57] Wagoner, R.H., Carden, W.D., Carden, W.P., Matlock, D.K., 1997. Springback after drawing and bending of metal sheets. In: Chandra T., Leclair, S.R., Meech, J.A., Verma, B., Smith, M. (Eds.), Proceedings of IPMM’97-Intelligent Processing and Manufacturing of Materials, University of Wollongong (Intelligent Systems Applications), Balachandram, Australia, pp. 1 – 10.
[58] Wang, J. F.; Wagoner, R. H.; Carden, W. P.; Matlock, D. K.; Barlat, F.: Creep and anelasticity in the springback of aluminum alloys, International journal of plasticity 20, 2209-2232 (2004) · Zbl 1135.74306 · doi:10.1016/j.ijplas.2004.05.008
[59] Yang, D. Y.; Kim, Y. J.: A rigid-plastic finite element calculation for the analysis of general deformation of planar anisotropic sheet metals and its application, International journal of mechanical sciences 28, 825-840 (1986) · Zbl 0604.73047 · doi:10.1016/0020-7403(86)90029-9
[60] Yoon, J. W.; Song, I. S.; Yang, D. Y.; Chung, K.; Barlat, F.: Finite element method for sheet forming based on an anisotropic strain-rate potential and the convected coordinate system, International journal of mechanical sciences 37, 733-752 (1995) · Zbl 0839.73075 · doi:10.1016/0020-7403(95)00003-G
[61] Yoon, J. W.; Barlat, F.; Grácio, J. J.; Rauch, E.: Anisotropic strain hardening behavior in simple shear for cube textured aluminum alloy sheets, International journal of plasticity 21, 2426-2447 (2005) · Zbl 1101.74318 · doi:10.1016/j.ijplas.2005.03.014
[62] Yoon, J. W.; Barlat, F.; Dick, R. E.; Chung, K.; Kang, T. J.: Plane stress yield function for aluminum alloy sheets. Part II: FE formulation and its implementation, International journal of plasticity 20, 495 (2004) · Zbl 1254.74113
[63] Yoon, J. W.; Pourboghrat, F.; Chung, K.; Yang, D. Y.: Springback prediction for sheet metal forming process using a 3D hybrid membrane/shell method, International journal of mechanical sciences 44, No. 10, 2133-2153 (2002) · Zbl 1087.74644 · doi:10.1016/S0020-7403(02)00165-0
[64] Yoon, J. W.; Yang, D. Y.; Chung, K.: Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials, Computer methods in applied mechanics and engineering 174, 23 (1999) · Zbl 1065.74624 · doi:10.1016/S0045-7825(98)00275-8
[65] Yoshida, F.: A constitutive model of cyclic plasticity, International journal of plasticity 16, 359-380 (2000) · Zbl 0955.74010 · doi:10.1016/S0749-6419(99)00058-3
[66] Yoshida, F.; Uemori, T.: A model of large-strain cyclic plasticity describing the bauschinger effect and workhardening stagnation, International journal of plasticity 18, 661-686 (2002) · Zbl 1038.74013 · doi:10.1016/S0749-6419(01)00050-X
[67] Yoshida, F.; Uemori, T.; Fujiwara, K.: Elastic – plastic behavior of steel sheets under in-plane cyclic tension – compression at large strain, International journal of plasticity 18, 633-659 (2002) · Zbl 0995.74502 · doi:10.1016/S0749-6419(01)00049-3
[68] Yoshida, F.; Uemori, T.: A model of large-strain cyclic plasticity and its application to springback simulation, International journal of mechanical sciences 45, 1687-1702 (2003) · Zbl 1049.74014 · doi:10.1016/j.ijmecsci.2003.10.013
[69] Wagoner, R. H.; Li, M.: Simulation of springback: through-thickness integration, International journal of plasticity 23, 345-360 (2007) · Zbl 1349.74378
[70] Wilkins, M. L.: Calculation of elastic – plastic flow, Methods of comp. Physics 3 (1964) · Zbl 0131.34603
[71] Zeng, D., Xia, Z.C., 2005. An anisotropic hardening model for springback prediction. In: Smith, L.M., Pourboghrat, F., Yoon, J.W., Stoughton, T.B. (Eds.), Proceedings of the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Detroit, USA, pp. 241 – 226.
[72] Ziegler, H.: A modification of Prager’s hardening rule, Quarterly journal of applied mathematics 17, 55 (1959) · Zbl 0086.18704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.