×

Generalized dissemblance index as a difference of first moments of fuzzy numbers – a new perspective on the distance of fuzzy numbers. (English) Zbl 07821787

Summary: This paper investigates the formulation of the dissemblance index as a basis for the calculation of distances of fuzzy numbers and explores its potential linkages with standard and possibilistic moments of fuzzy numbers. Applying the LSC transformation introduced recently by P. Luukka et al. [Adv. Intell. Syst. Comput. 642, 456–467 (2018; doi:10.1007/978-3-319-66824-6_40); Soft Comput. 23, No. 10, 3229–3235 (2019; Zbl 1418.03162)] we transform the general formulation of the dissemblance index into its “probabilistic” analogy and show that the result can be interpreted as a difference of COGs of the respective fuzzy numbers (potentially with hedges applied to them). We also show that the difference of possibilistic means is a special case of the general dissemblance index, when \(w = 1\). We also propose a generalized version of the possibilistic mean of a fuzzy number and prove its properties. We discuss the implications of this relationship on the practical use of the generalized dissemblance index and investigate its performance in the task of ranking of fuzzy numbers.

MSC:

03E72 Theory of fuzzy sets, etc.
68T37 Reasoning under uncertainty in the context of artificial intelligence

References:

[1] Carlsson, C.; Fuller, R., On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst., 315-326 (2001) · Zbl 1016.94047
[2] (Collan, M.; Kacprzyk, J., Soft Computing Applications for Group Decision-Making and Consensus Modeling (2018), Springer International Publishing AG: Springer International Publishing AG Cham) · Zbl 1388.68006
[3] Degani, R.; Bortolan, G., The problem of linguistic approximation in clinical decision making. Int. J. Approx. Reason., 143-162 (1988)
[4] Du, W. S., Subtraction and division operations on intuitionistic fuzzy sets derived from the Hamming distance. Inf. Sci., 206-224 (2021) · Zbl 1539.03178
[5] Eshragh, F.; Mamdani, E. H., A general approach to linguistic approximation. Int. J. Man-Mach. Stud., 501-519 (1979) · Zbl 0403.68075
[6] Jiang, L.; Liao, H., Double-quantified linguistic variable. Inf. Sci., 207-222 (2021) · Zbl 1475.68382
[7] Kaufman, A.; Gupta, M. M., Introduction to Fuzzy Arithmetic (1985), Van Nostrand Reinhold: Van Nostrand Reinhold New York · Zbl 0588.94023
[8] Kumar, K.; Chen, S. M., Group decision making based on weighted distance measure of linguistic intuitionistic fuzzy sets and the TOPSIS method. Inf. Sci., 660-676 (2022) · Zbl 1537.91078
[9] Li, S.; Yang, J.; Wang, G.; Xu, T., Multi-granularity distance measure for interval-valued intuitionistic fuzzy concepts. Inf. Sci., 599-622 (2021) · Zbl 1528.68375
[10] Lubiano, M. A.; García-Izquierdo, A. L.; Gil, M.Á., Fuzzy rating scales: does internal consistency of a measurement scale benefit from coping with imprecision and individual differences in psychological rating?. Inf. Sci., 91-108 (2021) · Zbl 1486.91073
[11] Lughofer, E., Evolving multi-label fuzzy classifier. Inf. Sci., 1-23 (2022) · Zbl 07810791
[12] Lughofer, E., Evolving multi-user fuzzy classifier systems integrating human uncertainty and expert knowledge. Inf. Sci., 30-52 (2022)
[13] Luukka, P., A classification method based on similarity measures of generalized fuzzy numbers in building expert system for postoperative patients, 3-10
[14] Luukka, P.; Stoklasa, J., Similarity based TOPSIS with linguistic-quantifier based aggregation using OWA. Ann. Comput. Sci. Inf. Syst., 45-51 (2021)
[15] Luukka, P.; Stoklasa, J.; Collan, M., Transformation of variance to possibilistic variance and vice versa, 456-467
[16] Luukka, P.; Stoklasa, J.; Collan, M., Transformations between the center of gravity and the possibilistic mean for triangular and trapezoidal fuzzy numbers. Soft Comput., 3229-3235 (2019) · Zbl 1418.03162
[17] Rico, N.; Huidobro, P.; Bouchet, A.; Díaz, I., Similarity measures for interval-valued fuzzy sets based on average embeddings and its application to hierarchical clustering. Inf. Sci., 794-812 (2022) · Zbl 1539.62204
[18] Saeidifar, A.; Pasha, E., The possibilistic moments of fuzzy numbers and their applications. J. Comput. Appl. Math., 1028-1042 (2009) · Zbl 1159.65013
[19] Sinuk, V. G.; Kulabukhov, S. V., Classification method for objects with fuzzy values of features. Sci. Tech. Inf. Process., 481-485 (2022)
[20] Stoklasa, J.; Luukka, P., The \(α\)-weighted averaging operator. Fuzzy Sets Syst. (2023)
[21] Stoklasa, J.; Luukka, P.; Collan, M., Possibilistic fuzzy pay-off method for real option valuation with application to research and development investment analysis. Fuzzy Sets Syst., 153-169 (2021) · Zbl 1464.91075
[22] Stoklasa, J.; Luukka, P.; Collan, M., On the relationship between possibilistic and standard moments of fuzzy numbers. J. Comput. Appl. Math. (2022) · Zbl 1491.03067
[23] Stoklasa, J.; Talášek, T.; Stoklasová, J., Semantic differential for the twenty-first century: scale relevance and uncertainty entering the semantic space. Qual. Quant., 435-448 (2019)
[24] Stoklasa, J.; Talášek, T.; Stoklasová, J., Executive summaries of uncertain values close to the gain/loss threshold – linguistic modelling perspective. Expert Syst. Appl. (2020)
[25] Talášek, T., The linguistic approximation of fuzzy models outputs (2019), Palacký University Olomouc: Palacký University Olomouc Olomouc, (dissertation thesis)
[26] Talášek, T.; Stoklasa, J., The role of distance/similarity measures in the linguistic approximation of triangular fuzzy numbers, 539-546
[27] Talášek, T.; Stoklasa, J.; Talašová, J., Linguistic approximation using fuzzy 2-tuples in investment decision making, 817-822
[28] Tian, X.; Ma, J.; Li, L.; Xu, Z.; Tang, M., Development of prospect theory in decision making with different types of fuzzy sets: a state-of-the-art literature review. Inf. Sci., 504-528 (2022) · Zbl 1536.91165
[29] Trutschnig, W.; González-Rodríguez, G.; Colubi, A.; Gil, M. A., A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread. Inf. Sci., 3964-3972 (2009) · Zbl 1181.62016
[30] Uriz, M.; Paternain, D.; Bustince, H.; Galar, M., A supervised fuzzy measure learning algorithm for combining classifiers. Inf. Sci., 490-511 (2023) · Zbl 07838194
[31] Wang, H.; Xu, Z.; Zeng, X. J., Linguistic terms with weakened hedges: a model for qualitative decision making under uncertainty. Inf. Sci., 37-54 (2018)
[32] Yager, R. R., On the retranslation process in Zadeh’s paradigm of computing with words. IEEE Trans. Syst. Man Cybern., Part B, Cybern., 1184-1195 (2004)
[33] Zadeh, L. A., Fuzzy sets. Inf. Control, 338-353 (1965) · Zbl 0139.24606
[34] Zadeh, L. A., A fuzzy-set-theoretic interpretation of linguistic hedges. J. Cybern., 4-34 (1972)
[35] Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci., 199-249 (1975) · Zbl 0397.68071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.