×

Asymptotic log-Harnack inequality for the 2D Ericksen-Leslie model system with degenerate noise and damping. (English) Zbl 1540.35479

Summary: In this paper, we consider a 2D liquid crystal model with damping and examine some asymptotic behaviors of the strong solution. More precisely, we establish the asymptotic log-Harnack inequality for the transition semigroup associated with a simplified liquid crystal model driven by an additive degenerate noise via the asymptotic coupling method. As consequences of the asymptotic log-Harnack inequality, we derive the gradient estimate, the asymptotic irreducibility, the asymptotic strong Feller property, the asymptotic heat kernel estimate and the ergodicity.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
35Q35 PDEs in connection with fluid mechanics
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
76M35 Stochastic analysis applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Abels, H., On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ. Math. J.57 (2008) 659-698. · Zbl 1144.35041
[2] Abels, H., On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal.194 (2009) 463-506. · Zbl 1254.76158
[3] Antontsev, S. N. and de Oliveira, H. B., The Navier-Stokes problem modified by an absorption term, Appl. Anal.12 (2010) 1805-1825. · Zbl 1215.35087
[4] Arnaudon, M., Thalmaier, A. and Wang, F. Y., Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds, Stochastic Process. Appl.119 (2009) 3653-3670. · Zbl 1178.58013
[5] Bao, J. H., Wang, F. Y. and Yuan, C. G., Asymptotic log-Harnack inequality and applications for stochastic systems of infinite memory, Stochastic Process. Appl.129 (2019) 4576-4596. · Zbl 1433.60032
[6] Boyer, F., Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptot. Anal.20 (1999) 175-212. · Zbl 0937.35123
[7] Boyer, F., Nonhomogeneous Cahn-Hilliard fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (2001) 225-259. · Zbl 1037.76062
[8] Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids31 (2002) 41-68. · Zbl 1057.76060
[9] Brzeźniak, Z., Hausenblas, E. and Razafimandimby, P. A., Some results on the penalised nematic liquid crystals driven by multiplicative noise, Stoch. Part. Differ. Equ.: Anal. Comput.7 (2019) 417-475. · Zbl 1431.76025
[10] Brzeźniak, Z. L., Komorowski, T. and Peszat, S., Ergodicity for stochastic equations of Navier-Stokes type, Electron. Comm. Probab.27 (2022) 4. · Zbl 1490.60181
[11] Z. Brzeźniak, U. Manna and A. A. Panda, Existence of weak martingale solution of nematic liquid crystals driven by pure jump noise, preprint (2017), arXiv:1706.05056.
[12] Butkovsky, O., Kulik, A. and Scheutzow, M., Generalized couplings and ergodic rates for SPDEs and other Markov models, Ann. Appl. Probab.30 (2020) 1-39. · Zbl 1434.60147
[13] Cao, C. and Gal, C., Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility, Nonlinearity25 (2012) 3211-3234. · Zbl 1259.35048
[14] Cavaterra, C., Rocca, E. and Wu, H., Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differ. Equ.255 (2013) 24-57. · Zbl 1282.35087
[15] Da Prato, G. and Zabczyk, J., Ergodicity for Infinite-Dimensional Systems, , Vol. 229 (Cambridge Univ. Press, 1996). · Zbl 0849.60052
[16] Da Prato, G. and Zabczyk, J., Stochastic Equations in Infinite Dimensions, 2nd edn. (Cambridge Univ. Press, 2014). · Zbl 1317.60077
[17] Debussche, A., Ergodicity results for the stochastic Navier-Stokes equations: An introduction, in Topics in Mathematical Fluid Mechanics, , Vol. 2073 (Springer, 2013), pp. 23-108. · Zbl 1301.35086
[18] Ericksen, J. L., Conservation laws for liquid crystals, Trans. Soc. Rheol.5 (1961) 23-34.
[19] Ericksen, J. L., Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal.9 (1962) 371-378. · Zbl 0105.23403
[20] Fan, J. and Jiang, F., Large-time behavior of liquid crystal flows with a trigonometric condition in two dimensions, Commun. Pure Appl. Anal.15 (2016) 73-90. · Zbl 1333.35192
[21] Feireisl, E., Frémond, M. and Rocca, E., A new approach to non-isothermal models for nematic liquid crystals, Arch. Ration. Mech. Anal.205 (2012) 651-672. · Zbl 1282.76059
[22] Feireisl, E., Rocca, E. and Schimperna, G., On a non-isothermal model for nematic liquid crystals, Nonlinearity24 (2011) 243-257. · Zbl 1372.76011
[23] Flandoli, F. and Maslowski, B., Ergodicity of the 2D Navier-Stokes equation under random perturbations, Comm. Math. Phys.171 (1995) 119-141. · Zbl 0845.35080
[24] Gal, C. and Grasselli, M., Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire27 (2010) 401-436. · Zbl 1184.35055
[25] Gal, C. and Grasselli, M., Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst.28 (2010) 1-39. · Zbl 1194.35056
[26] Glatt-Holtz, N., Mattingly, J. C. and Richards, G., On unique ergodicity in nonlinear stochastic partial differential equations, J. Statist. Phys.166 (2017) 618-649. · Zbl 1375.37144
[27] Gong, H., Huang, J., Liu, L. and Liu, X., Global strong solutions of the 2D simplified Ericksen-Leslie system, Nonlinearity28 (2015) 3677-3694. · Zbl 1430.76042
[28] Gong, H., Li, J. and Xu, C., Local well-posedness of strong solutions to density-dependent liquid crystal system, Nonlinear Anal.147 (2016) 26-44. · Zbl 1354.35101
[29] Hairer, M. and Mattingly, J. C., Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math.164 (2006) 993-1032. · Zbl 1130.37038
[30] Hajduk, K. W. and Robinson, J. C., Energy equality for the 3D critical convective Brinkman-Forchheimer equations, J. Differ. Equ.263 (2017) 7141-7161. · Zbl 1379.35242
[31] Hong, M. C., Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc. Var. Part. Differ. Equ.40 (2011) 15-36. · Zbl 1213.35014
[32] Hong, W., Li, S. and Liu, W., Asymptotic log-Harnack inequality and applications for SPDE with degenerate multiplicative noise, Statist. Probab. Lett.164 (2020) 108810. · Zbl 1454.60094
[33] Hong, W., Li, S. and Liu, W., Asymptotic log-Harnack inequality and applications for stochastic 2D hydrodynamical-type systems with degenerate noise, J. Evol. Equ.21 (2021) 419-440. · Zbl 1462.60086
[34] Hong, M. C., Li, J. and Xin, Z., Blow-up criteria of strong solutions to the Ericksen-Leslie system in \(R^3\), Comm. Part. Differ. Equ.39 (2014) 1284-1328. · Zbl 1327.35319
[35] Hong, M. C. and Xin, Z. P., Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in \(R^2\), Adv. Math.231 (2012) 1364-1400. · Zbl 1260.35113
[36] Huang, J., Lin, F. and Wang, C., Regularity and existence of global solutions to the Ericksen-Leslie system in \(R^2\), Comm. Math. Phys.331 (2014) 805-850. · Zbl 1298.35147
[37] Hui, L., Chengfeng, S. and Jie, X., Well-posedness for 3D nematic liquid crystal flows with damping, J. Inequal. Appl.2020 (2020) 115. · Zbl 1503.35172
[38] Kalantarov, V. K. and Zelik, S., Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal.11 (2012) 2037-2054. · Zbl 1264.35054
[39] Kulik, A. and Scheutzow, M., Generalized couplings and convergence of transition probabilities, Probab. Theory Related Fields171 (2018) 333-376. · Zbl 1392.60061
[40] Leslie, F. M., Some constitutive equations for anisotropic fluids, Quart. J. Mech. Appl. Math.19 (1966) 357-370. · Zbl 0148.20504
[41] Leslie, F. M., Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal.28 (1968) 265-283. · Zbl 0159.57101
[42] Li, S., Liu, W. and Xie, Y., Ergodicity of 3D Leray-\( \alpha\) model with fractional dissipation and degenerate stochastic forcing, Infin. Dimens. Anal. Quantum Probab. Relat. Top.22 (2019) 1950002. · Zbl 1447.60108
[43] Li, J., Titi, E. S. and Xin, Z., On the uniqueness of weak solutions to the Ericksen-Leslie liquid crystal model in \(R^2\), Math. Models Methods Appl. Sci.26 (2016) 803-822. · Zbl 1332.76013
[44] Lin, F. H., Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math.42 (1989) 789-814. · Zbl 0703.35173
[45] Lin, F. H. and Liu, C., Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math.48 (1995) 501-537. · Zbl 0842.35084
[46] Lin, F. H. and Liu, C., Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst.2 (1996) 1-22. · Zbl 0948.35098
[47] Lin, F. H. and Liu, C., Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal.154 (2000) 135-156. · Zbl 0963.35158
[48] Lin, F. H., Liu, J. Y. and Wang, C. Y., Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal.197 (2010) 297-336. · Zbl 1346.76011
[49] Lin, F. and Wang, C., On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chinese Ann. Math. Ser. B31 (2010) 921-938. · Zbl 1208.35002
[50] Lin, F. and Wang, C., Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math.69 (2016) 1532-1571. · Zbl 1349.35299
[51] Liu, W., Harnack inequality and applications for stochastic evolution equations with monotone drifts, J. Evol. Equ.9 (2009) 747-770. · Zbl 1239.60058
[52] Liu, W. and Wang, F. Y., Harnack inequality and strong Feller property for stochastic fast-diffusion equations, J. Math. Anal. Appl.342 (2008) 651-662. · Zbl 1151.60032
[53] Meyn, S. and Tweedie, R., Markov Chains and Stochastic Stability, 2nd edn. (Cambridge Univ. Press, 2009). · Zbl 1165.60001
[54] M. T. Mohan, Asymptotic log-Harnack inequality for the stochastic convective Brinkman-Forchheimer equations with degenerate noise, preprint (2020), arXiv:2008.00955.
[55] Numellin, E., General Irreducible Markov Chains and Non-negative Operators, 2nd edn. (Cambridge Univ. Press, 2004).
[56] Prokhorov, Y. V., Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl.1 (1956) 157-214.
[57] Sun, H. and Liu, C., On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst.23 (2009) 455-475. · Zbl 1156.76007
[58] Tachim Medjo, T., On a stochastic 2D simplified liquid crystal model driven by jump noise, Commun. Stoch. Anal.12 (2019) 397-426.
[59] Tachim Medjo, T., On the existence and uniqueness of solution to a stochastic simplified 2D liquid crystal model, Commun. Pure, Appl. Anal.18 (2019) 2243-2264. · Zbl 1484.76013
[60] Wang, F. Y., Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Related Fields109 (1997) 417-424. · Zbl 0887.35012
[61] Wang, F. Y., Harnack inequality and applications for stochastic generalized porous media equations, Ann. Probab.35 (2007) 1333-1350. · Zbl 1129.60060
[62] Wang, F. Y., Harnack inequalities on manifolds with boundary and applications, J. Math. Pures Appl.94 (2010) 304-321. · Zbl 1207.58028
[63] Wang, F. Y., Harnack Inequalities and Applications for Stochastic Partial Differential Equations (Springer, 2013). · Zbl 1332.60006
[64] Wang, M. and Wang, W., Global existence of weak solution for the 2-D Ericksen-Leslie system, Calc. Var. Part. Differ. Equ.51 (2014) 915-962. · Zbl 1303.35077
[65] Wang, M., Wang, W. and Zhang, Z., On the uniqueness of weak solution for the 2-D Ericksen-Leslie system, Discrete Contin. Dyn. Syst. Ser. B21 (2016) 919-941. · Zbl 1353.35007
[66] Wang, F. Y., Wu, J. L. and Xu, L., Log-Harnack inequality for stochastic Burgers equations and applications, J. Math. Anal. Appl.384 (2011) 151-159. · Zbl 1227.60079
[67] Wang, F. Y. and Zhang, T. S., Log-Harnack inequality for mild solutions of SPDEs with multiplicative noise, Stochastic Process. Appl.124 (2014) 1261-1274. · Zbl 1285.60065
[68] Weinan, E. and Mattingly, J. C., Ergodicity for the Navier-Stokes equation with degenerate random forcing: Finite-dimensional approximation, Comm. Pure Appl. Math.54 (2001) 1386-1402. · Zbl 1024.76012
[69] Weinan, E., Mattingly, J. C. and Sinai, Y., Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys.224 (2001) 83-106. · Zbl 0994.60065
[70] Wu, H., Xu, X. and Liu, C., Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties, Calc. Var. Part. Differ. Equ.45 (2012) 319-345. · Zbl 1259.35040
[71] Wu, H., Xu, X. and Liu, C., On the general Ericksen-Leslie system: Parodi’s relation, well-posedness and stability, Arch. Ration. Mech. Anal.208 (2013) 59-107. · Zbl 1320.76010
[72] Xu, L., A modified log-Harnack inequality and asymptotically strong Feller property, J. Evol. Equ.11 (2011) 925-942. · Zbl 1270.60085
[73] Xu, X. and Zhang, Z., Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows, J. Differ. Equ.252 (2012) 1169-1181. · Zbl 1336.76005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.