×

Uniform stabilization for a semilinear wave equation with variable coefficients and nonlinear boundary conditions. (English) Zbl 1498.35078

Summary: The uniform stabilization of a semilinear wave equation with variable coefficients and nonlinear boundary conditions is considered. The uniform decay rate is established by the Riemannian geometry method.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35L20 Initial-boundary value problems for second-order hyperbolic equations
35L71 Second-order semilinear hyperbolic equations
Full Text: DOI

References:

[1] S. Berrimi and S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differential Equations 2004, no. 88, 10 pp. · Zbl 1055.35020
[2] X. Cao and P. Yao, General decay rate estimates for viscoelastic wave equation with variable coefficients, J. Syst. Sci. Complex. 27 (2014), no. 5, 836-852. · Zbl 1325.35211 · doi:10.1007/s11424-014-1056-x
[3] M. M. Cavalcanti, W. J. Corrêa, V. N. Domingos Cavalcanti, J. C. O. Faria and S. Mansouri, Uniform decay rate estimates for the wave equation in an inhomogeneous medium with simultaneous interior and boundary feedbacks, J. Math. Anal. Appl. 495 (2021), 124706, 32 pp. · Zbl 1459.35035
[4] M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differential Equations 2002, no. 44, 14 pp. · Zbl 0997.35037
[5] M. M. Cavalcanti, A. Khemmoudj and M. Madjden, Uniform stabilization of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions, J. Math. Anal. Appl. 338 (2007), no. 2, 900-930. · Zbl 1107.35024
[6] Y. H. Kang, M. J. Lee and I. H. Jung, Sharp energy decay estimates for the wave equation with a local degenerate dissipation, Comput. Math. Appl. 57 (2009), no. 1, 21-27. · Zbl 1165.35409
[7] A. Khemmoudj and M. Medjden, Exponential decay for the semilinear Cauchy-Ventcel problem with localized damping, Bol. Soc. Parana. Mat. (3) 22 (2004), no. 2, 97-116. · Zbl 1091.35517
[8] A. Khemmoudj and L. Seghour, Exponential stabilization of a viscoelastic wave equation with dynamic boundary conditions, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 5, 1259-1286. · Zbl 1321.93054
[9] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. (9) 69 (1990), no. 1, 33-54. · Zbl 0636.93064
[10] J. E. Langnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, J. Differential Equations 91 (1991), no. 2, 355-388. · Zbl 0802.73052
[11] I. Lasiecka, Global uniform decay rates for the solutions to wave equation with nonlinear boundary conditions, Appl. Anal. 47 (1992), no. 2-3, 191-212. · Zbl 0788.35008
[12] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations 6 (1993), no. 3, 507-533. · Zbl 0803.35088
[13] I. Lasiecka and D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Anal. 64 (2006), no. 8, 1757-1797. · Zbl 1096.35021
[14] I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim. 25 (1992), no. 2, 189-224. · Zbl 0780.93082
[15] I. Lasiecka, R. Triggiani and P.-F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients, J. Math. Anal. Appl. 235 (1999), no. 1, 13-57. · Zbl 0931.35022 · doi:10.1006/jmaa.1999.6348
[16] I. Lasiecka and X. Wang, Intrinsic decay rate estimates for semilinear abstract second order equations with memory, in: New Prospects in Direct, Inverse and Control Problems for Evolution Equations, 271-303, Springer INdAM Ser. 10, Springer, Cham, 2014. · Zbl 1476.35146
[17] J. Li and S. Chai, Energy decay for a nonlinear wave equation of variable coefficients with acoustic boundary conditions and a time-varying delay in the boundary feedback, Nonlinear Anal. 112 (2015), 105-117. · Zbl 1304.35096 · doi:10.1016/j.na.2014.08.021
[18] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Gauthier-Villars, Paris, 1969. · Zbl 0189.40603
[19] W. Liu, Exponential stability of the energy of the wave equation with variable coefficients and a boundary distributed delay, Z. Naturforsch. A 69 (2014), no. 10-11, 547-552.
[20] Z.-H. Ning, C.-X. Shen and X. Zhao, Stabilization of the wave equation with variable coefficients and a delay in dissipative internal feedback, J. Math. Anal. Appl. 405 (2013), no. 1, 148-155. · Zbl 1306.93061
[21] J. Y. Park and S. H. Park, General Decay for Quasilinear Viscoelastic Equations with Nonlinear Weak Damping, J. Math. Phys. 50 (2009), No. 8, 083505, 10 pp. · Zbl 1298.35221
[22] J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J. 24 (1974), 79-86. · Zbl 0281.35012
[23] A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential, J. Math. Pures Appl. (9) 71 (1992), no. 5, 455-467. · Zbl 0832.35084
[24] J. Simon, Compact sets in the space \(L^p(0,T;B)\), Ann. Mat. Pura Appl. (4) 146 (1987), 65-96. · Zbl 0629.46031 · doi:10.1007/BF01762360
[25] R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach, J. Math. Anal. Appl. 137 (1989), no. 2, 438-461. · Zbl 0686.35067
[26] H. Wu, C. L. Shen and Y. L. Yu, An Introduction to Riemannian Geometry, University of Beijing, 1989.
[27] P.-F. Yao, On the observability inequalities for exact controllability of wave equations with variable coefficients, SIAM J. Control Optim. 37 (1999), no. 5, 1568-1599. · Zbl 0951.35069 · doi:10.1137/S0363012997331482
[28] Y. C. You, Energy decay and exact controllability for the Petrovsky equation in a bounded domain, Adv. in Appl. Math. 11 (1990), no. 3, 372-388. · Zbl 0712.93003
[29] E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim. 28 (1990), no. 2, 466-477. · Zbl 0695.93090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.