×

SEM in-situ investigation on failure of nanometallic film/substrate structures under three-point bending loading. (English) Zbl 1419.74026

Summary: Three-point bending tests on nanocrystalline Cu or Cu/Ni-film/Cu-substrate samples were conducted in-situ with scanning electron microscopy (SEM) observations. The SEM in-situ observations show undulation deformation of the surface of thin film, as the thin film fractures easily at the concave-convex points of deformation and multi-cracks appear on the surface of the thin film in a periodic fashion. The critical wavelength of undulation is calculated based on experimental observations, which are comparable with the theoretical predictions. For the Cu/Ni multi-layered films/substrate structures, the micro-cracking pattern depends on the interfacial strength between the film and the substrate, rather than the interfacial strength between the layers of films.

MSC:

74-05 Experimental work for problems pertaining to mechanics of deformable solids
74K35 Thin films
74R99 Fracture and damage
Full Text: DOI

References:

[1] Asaro RJ, Tiller WA (1972) Interface morphology development during stress corrosion cracking: part I. via surface diffusion. Metall Trans 3: 1789–1996 doi: 10.1007/BF02642562 · doi:10.1007/BF02642562
[2] Chen CK, Hon MH (2002) The morphology and mechanical properties of TiN/M-P-SiC hybrid coatings. Surf Coat Technol 155: 214–220 doi: 10.1016/S0257-8972(02)00053-1 · doi:10.1016/S0257-8972(02)00053-1
[3] Co MML (2008) http://www.micromaterials.co.uk/ScratchTesting.htm
[4] Dkhil B, Defay E, Guillan J (2007) Strains in BaTiO3 thin film deposited onto Pt-coated Si substrate. Appl Phys Lett 90: 022908 doi: 10.1063/1.2430915 · doi:10.1063/1.2430915
[5] Feng XQ, Li JY, Yu SW (2003) A simple method for calculation interaction of numerous microcracks and its application. Int J Solids Struct 40: 447–464 doi: 10.1016/S0020-7683(02)00519-X · Zbl 1064.74644 · doi:10.1016/S0020-7683(02)00519-X
[6] Feng XQ, Li JY, Ma L, Yu SW (2003) Analysis on interaction of numerous microcracks. Comput Mater Sci 28: 454–461 doi: 10.1016/j.commatsci.2003.06.001 · doi:10.1016/j.commatsci.2003.06.001
[7] Freund LB (1995) Evolution of waviness on the surface of a strained elastic solid due to stress-driven diffusion. Int J Solids Struct 32: 911–923 doi: 10.1016/0020-7683(94)00168-V · Zbl 0872.73056 · doi:10.1016/0020-7683(94)00168-V
[8] Gao HJ, Nix WD (1999) Surface roughening of heteroepitaxial thin films. Annu Rev Mater Sci 29: 173–209 doi: 10.1146/annurev.matsci.29.1.173 · doi:10.1146/annurev.matsci.29.1.173
[9] Huang F, Barnardm JA, Weaver ML (2002) Mechanical characterization of DC magnetron sputtered amorphous TiAl-Cr coatings. Surf Coat Technol 155: 146–151 doi: 10.1016/S0257-8972(02)00060-9 · doi:10.1016/S0257-8972(02)00060-9
[10] Huang JG, Wang XS, Meng XK (2007) SEM in situ study on deformation behavior of Cu and Cu/Ni films under three-point bending. Mater Trans 48(10): 2795–2798 doi: 10.2320/matertrans.MRP2007069 · doi:10.2320/matertrans.MRP2007069
[11] Kim JH, Vlassak JJ (2007) Perturbation analysis of an undulating free surface in a multi-layered structure. Int J Solids Struct 44: 7924–7937 doi: 10.1016/j.ijsolstr.2007.05.025 · Zbl 1167.74419 · doi:10.1016/j.ijsolstr.2007.05.025
[12] Kim KS, Hurtado JA, Tan H (1999) Evolution of a surface-roughness spectrum caused by stress in nanometer-scale chemical etching. Phys Rev Lett 83: 3872–3875 doi: 10.1103/PhysRevLett.83.3872 · doi:10.1103/PhysRevLett.83.3872
[13] Kraft O, Schwaiger R, Wellner P (2001) Fatigue critical wavelength in the thin films: lifetime and damage formation. Mater Sci Eng A 319(20): 919–923 doi: 10.1016/S0921-5093(01)00990-X · doi:10.1016/S0921-5093(01)00990-X
[14] Li T, Suo Z (2006) Deformability of thin metal films on elastomer substrates. Int J Solids Struct 43: 2351–2363 doi: 10.1016/j.ijsolstr.2005.04.034 · Zbl 1121.74414 · doi:10.1016/j.ijsolstr.2005.04.034
[15] Li Y, Wang XS, Meng XK (2008) Buckling behavior of metal film/substrate structure under pure bending. Appl Phys Lett 92: 131902 doi: 10.1063/1.2897035 · doi:10.1063/1.2897035
[16] Nicola L, Xiang Y, Vlassak J, Giessen E, Needleman A (2006) Plastic deformation of freestanding thin films: experiments and modeling. J Mech Phys Solids 54: 2089–2110 doi: 10.1016/j.jmps.2006.04.005 · Zbl 1120.74617 · doi:10.1016/j.jmps.2006.04.005
[17] Nie X, Leyland A, Song HW, Yerokhin AL, Dowey SJ, Matthews A (1999) Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys. Surf Coat Technol 116(19): 1055–1060 doi: 10.1016/S0257-8972(99)00089-4 · doi:10.1016/S0257-8972(99)00089-4
[18] Nix WD, Earthman JC, Eggeler G, Ilschner B (1988) Principal facet stress as a parameter for predicting creep rupture under multiaxial stresses. Acta Metall 37(4): 1067–1077 doi: 10.1016/0001-6160(89)90103-X
[19] Schwaiger R, Kraft O (1999) High cycle fatigue of thin silver films investigated by dynamic microbeam deflection. Scr Mater 41: 823–829 doi: 10.1016/S1359-6462(99)00231-6 · doi:10.1016/S1359-6462(99)00231-6
[20] Schwaiger R, Kraft O (2003) Size effects in the fatigue behavior of thin Ag films. Acta Mater 51: 195–206 doi: 10.1016/S1359-6454(02)00391-9 · doi:10.1016/S1359-6454(02)00391-9
[21] Spatschek R, Brener EA (2001) Grinfeld instability on crack surfaces. Phys Rev E Stat Nonlin Soft Matter Phys 64: 046120 doi: 10.1103/PhysRevE.64.046120 · doi:10.1103/PhysRevE.64.046120
[22] Stoney GG (1909) Tension of metallic films deposited by electrolysis. Proc R Soc Lond A 82: 172–175 doi: 10.1098/rspa.1909.0021 · doi:10.1098/rspa.1909.0021
[23] Wang XS, Fan JH (2006) An evaluation the growth rate of small fatigue cracks in cast AM50 magnesium alloy at different temperature in vacuum environment. Int J Fatigue 28(1): 79–86 doi: 10.1016/j.ijfatigue.2005.03.004 · doi:10.1016/j.ijfatigue.2005.03.004
[24] Wang XS, Xu Y (2004) Experiments, characterizations and analysis of a dispersion U3Si2-Al fuel plate with sandwich structure. J Nucl Mater 328(2–3): 243–248 doi: 10.1016/j.jnucmat.2004.04.332 · doi:10.1016/j.jnucmat.2004.04.332
[25] Wang XS, Deng YH, Li YQ (2002) An experimental investigation of failure behaviors of conducting polythiophene coating films. J Mater Sci 37: 4743–4748 doi: 10.1023/A:1020874532674 · doi:10.1023/A:1020874532674
[26] Wang XS, Feng XQ, Gou XW (2004a) Failure behavior of anodized coating and magnesium alloy substrate. Key Eng Mater 631–634: 363–368 · doi:10.4028/www.scientific.net/KEM.261-263.363
[27] Wang XS, Xu Y, Xu XQ (2004) Direct observations of microcracking in the fuel plate using the scanning electron microscope. J Appl Compos Mater 11(3): 145–154 doi: 10.1023/B:ACMA.0000026478.76133.7a · doi:10.1023/B:ACMA.0000026478.76133.7a
[28] Wang XS, Liang F, Zeng YP, Xie XS (2005a) In-situ SEM observations to investigate the effects of inclusions on the low cyclic fatigue crack initiation and propagation of super strength steel. Acta Metall Sin 41(12): 1272–1276
[29] Wang XS, Li SS, Wang QY, Xu Y (2005) Effects of processes on the fatigue strength of U3Si2 fuel plate with sandwich structure. J Nucl Mater 342: 42–47 doi: 10.1016/j.jnucmat.2005.03.022 · doi:10.1016/j.jnucmat.2005.03.022
[30] Wang XS, Liang F, Fan JH, Zhang FH (2006) Investigations on low-cycle fatigue small crack initiation and propagation mechanism of cast magnesium alloys based on in-situ observation with SEM. Philos Mag 86(11): 1581–1596 doi: 10.1080/14786430500401070 · doi:10.1080/14786430500401070
[31] Wu K, Wang YQ, Zheng MY (2007) Effects of microarc oxidation surface treatment on the mechanical properties of Mg alloy and Mg matrix composites. Mater Sci Eng A 447(1–2): 227–232 doi: 10.1016/j.msea.2006.10.133 · doi:10.1016/j.msea.2006.10.133
[32] Xiang Y, Li T, Suo Z, Vlassak J (2005) High ductility of a metal film adherent on a polymer substrate. Appl Phys Lett 87: 161910 doi: 10.1063/1.2108110 · doi:10.1063/1.2108110
[33] Yu M, Zhang J, Li D, Meng Q, Li W (2006) Internal stress and adhesion of Cu film/Si prepared by both MEVVA and IBAD. Surf Coat Technol 201: 1243–1249 doi: 10.1016/j.surfcoat.2006.01.047 · doi:10.1016/j.surfcoat.2006.01.047
[34] Zhang TY, Zhao MH (2002) Equilibrium depth and spacing of cracks in a tensile residual stressed thin film deposited on a brittle substrate. Eng Fract Mech 69: 589–596 doi: 10.1016/S0013-7944(01)00098-4 · doi:10.1016/S0013-7944(01)00098-4
[35] Zhao MH, Fu R, Lu D, Zhang TY (2002) Critical thickness for cracking of Pb(Zr0.53Ti0.47)O-3 thin films deposited on Pt/Ti/Si(100) substrates. Acta Mater 50: 4241–4254 doi: 10.1016/S1359-6454(02)00254-9 · doi:10.1016/S1359-6454(02)00254-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.