×

Manipulation and improvement of autofocusing properties for circular butterfly beams. (English) Zbl 07770739

Summary: A new class of \((2 + 1)\)-dimensional circular butterfly beams (CBBs) is first demonstrated based on high-dimensional butterfly catastrophes. The intensity of CBBs increases abruptly by two orders of magnitude right before they propagate to the focal plane, implying that they possess an abruptly autofocusing (AAF) ability induced by accelerating properties. The autofocusing performance can be further improved by introducing vortices. Owing to the flexibility of high-dimensional catastrophes, butterfly beams exhibit diverse optical light structures; thus, the focal length, focal intensity, and light field structures of CBBs are tunable. Experimental results are consistent with numerical findings. Therefore, CBBs enrich the family of AAF beams and will be advantageous for optical micromachining, medical treatments, optical tweezers, and nonlinear processes.
© 2022 Wiley-VCH GmbH

MSC:

81-XX Quantum theory
Full Text: DOI

References:

[1] N. K.Efremidis, D. N.Christodoulides, Opt. Lett.2010, 35, 4045.
[2] K. Y.Zhan, J.Wang, R. Y.Jiao, Z. D.Yang, B.Liu, Ann. Phys.2019, 531, 1900293.
[3] J. F.Liu, Y. Q.Zhang, H.Zhong, J. W.Zhang, R.Wang, M. R.Belic, Y. P.Zhang, Ann. Phys.2018, 530, 1700307.
[4] I.Chremmos, N. K.Efremidis, D. N.Christodoulides, Opt. Lett.2011, 36, 1890.
[5] P.Zhang, J.Prakash, Z.Zhang, M. S.Mills, N. K.Efremidis, D. N.Christodoulides, Z. G.Chen, Opt. Lett.2011, 36, 2883.
[6] P.Panagiotopoulos, D. G.Papazoglou, A.Couairon, S.Tzortzakis, Nat. Commun.2013, 4, 1.
[7] S.Tzortzakis, L.Bergé, A.Couairon, M.Franco, B.Prade, A.Mysyrowicz, Phys. Rev. Lett.2001, 86, 5470.
[8] M.Mlejnek, E. M.Wright, J. V.Moloney, Opt. Lett.1998, 23, 382.
[9] K. M.Davis, K.Miura, N.Sugimoto, K.Hirao, Opt. Lett.1996, 21, 1729.
[10] P.Vaveliuk, A.Lencina, J. A.Rodrigo, O. M.Matos, Opt. Lett.2014, 39, 2370.
[11] P.Vaveliuk, A.Lencina, J. A.Rodrigo, O. M.Matos, J. Opt. Soc. Am. A2015, 32, 443.
[12] X. Y.Chen, D. M.Deng, J. L.Zhuang, X.Peng, D. D.Li, L. P.Zang, F.Zhao, X. B.Yang, H. Z.Liu, G. H.Wang, Opt. Lett.2018, 43, 3626.
[13] H. A.Teng, Y. X.Qian, Y. P.Lan, Y. M.Cai, Opt. Lett.2021, 46, 270.
[14] M.Manousidaki, D. G.Papazoglou, M.Farsari, S.Tzortzakis, Optica2016, 3, 525.
[15] D. G.Papazoglou, N. K.Efremidis, D. N.Christodoulides, S.Tzortzakis, Opt. Lett.2011, 36, 1842.
[16] R. S.Penciu, K. G.Makris, N. K.Efremidis, Opt. Lett.2016, 41, 1042.
[17] M. A.Alonso, M. A.Bandres, Opt. Express2014, 22, 14738.
[18] M. A.Bandres, Opt. Lett.2009, 34, 3791.
[19] I. D.Chremmos, Z. G.Chen, D. N.Christodoulides, N. K.Efremidis, Phys. Rev. A2012, 85, 023828.
[20] V. I.Arnol’d, Catastrophe Theory, Springer Science & Business Media, Berlin2003.
[21] G. A.Siviloglou, D. N.Christodoulides, Opt. Lett.2007, 32, 979.
[22] Y.Kaganovsky, E.Heyman, Opt. Express2010, 18, 8440.
[23] G. A.Siviloglou, J.Broky, A.Dogariu, D. N.Christodoulides, Phys. Rev. Lett.2007, 99, 213901.
[24] J. D.Ring, J.Lindberg, A.Mourka, M.Mazilu, K.Dholakia, M. R.Dennis, Opt. Express2012, 20, 18955.
[25] K. Y.Zhan, W. Q.Zhang, R. Y.Jiao, B.Liu, Opt. Express2020, 28, 20007.
[26] K. Y.Zhan, X. Y.Kang, L. C.Dou, D. Y.Xue, B.Liu, J. Opt. Soc. Am. B2022, 39, 751.
[27] I. B.Djordjevic, M.Arabaci, Opt. Express2010, 18, 24722.
[28] J.Wang, J. Y.Yang, I. M.Fazal, N.Ahmed, Y.Yan, H.Huang, Y. X.Ren, Y.Yue, S.Dolinar, M.Tur, A. E.Willner, Nat. Photonics2012, 6, 488.
[29] N.Bozinovic, Y.Yue, Y. X.Ren, M.Tur, P.Kristensen, H.Huang, A. E.Willner, S.Ramachandran, Science2013, 340, 1545.
[30] H. H.Fan, H.Zhang, C. Y.Cai, M. M.Tang, H. H.Li, J.Tang, X. Z.Li, Ann. Phys.2021, 533, 2000575. · Zbl 07767184
[31] H. X.Ma, X. Z.Li, Y. P.Tai, H. H.Li, J. G.Wang, M. M.Tang, J.Tang, Y. S.Wang, Z. G.Nie, Ann. Phys.2017, 529, 1700285.
[32] A.Zannotti, F.Diebel, M.Boguslawski, C.Denz, New J. Phys.2017, 19, 053004.
[33] Y. A.Kravtsov, Y. I.Orlov, Caustics, Catastrophes and Wave Fields, Springer Science & Business Media, Berlin2012. · Zbl 0789.58002
[34] M. V.Berry, C.Upstill, Prog. Opt.1980, 18, 257.
[35] J.Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations, The Institute of Physics Publishers, Boca Raton, FL1999. · Zbl 0984.78002
[36] N. P.Kirk, J. N. L.Connor, P. R.Curtis, C. A.Hobbs, J. Phys. A: Math. Gen.2000, 33, 4797. · Zbl 0972.65017
[37] M. V.Berry, J. Opt.2017, 19, 055601.
[38] A.Chong, W. H.Renninger, D. N.Christodoulides, F. W.Wise, Nat. Photonics2010, 4, 103.
[39] D.Rozas, C. T.Law, G. A.SwartzlanderJr., J. Opt. Soc. Am. B1997, 14, 3054.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.