×

Event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. (English) Zbl 1496.93082

Summary: This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.

MSC:

93C65 Discrete event control/observation systems
93C40 Adaptive control/observation systems
93C42 Fuzzy control/observation systems
93E03 Stochastic systems in control theory (general)
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Hale, J.; Lunel, S., Introduction to Functional Differential Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0787.34002
[2] Kolmanovskii, V.; Myshkis, A., Introduction to the Theory and Applications of Functional Differential Equations (1999), Kluwer Academy: Kluwer Academy Dordrecht · Zbl 0917.34001
[3] Cai, J.; Mei, C.; Yan, Q., Semi-global adaptive backstepping control for parametric strict-feedback systems with non-triangular structural uncertainties, ISA Trans. (2021)
[4] Yuan, J.; Ding, S., Fixed-time SOSM controller design with output constraint, Nonlinear Dyn., 102, 1567-1583 (2020) · Zbl 1517.93017
[5] Behrouz, H.; Mohammad, M.; Navid, V., Robust adaptive backstepping tracking control of stochastic nonlinear systems with unknown input saturation: a command filter approach, Int. J. Robust Nonlinear Control (2020) · Zbl 1466.93035
[6] Cai, J.; Wen, C.; Xing, L.; Yan, Q., Decentralized backstepping control for interconnected systems with non-triangular structural uncertainties, IEEE Trans. Automat. Control (2022)
[7] Deng, H.; Krstić, M., Stochastic nonlinear stabilization-i: a backstepping design, Syst. Control Lett., 32, 143-150 (1997) · Zbl 0902.93049
[8] Tong, S.; Li, Y.; Li, Y.; Liu, Y., Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems, IEEE Trans. Syst. ManCybern.-Part B, 41, 6, 1693-1704 (2011)
[9] Li, Y.; Tong, S.; Li, Y., Observer-based adaptive fuzzy backstepping control of MIMO stochastic nonlinear strict-feedback systems, Nonlinear Dyn., 67, 1579-1593 (2012) · Zbl 1242.93065
[10] Liu, Z.; Wang, F.; Chen, C., Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems, IEEE Trans. Cybern., 46, 2, 524-529 (2016)
[11] Zhang, J.; Xia, J.; Sun, W.; Zhuang, G.; Wang, Z., Finite-time tracking control for stochastic nonlinear systems with full state constraints, Appl. Math. Comput., 338, 1, 207-220 (2018) · Zbl 1427.93229
[12] Liu, Y.; Lu, S.; Tong, S.; Chen, X.; Chen, C.; Li, D., Adaptive control-based barrier Lyapunov functions for a class of stochastic nonlinear systems with full state constraints, Automatica, 87, 83-93 (2018) · Zbl 1378.93137
[13] Min, H.; Xu, S.; Zhang, B.; Ma, Q., Output-feedback control for stochastic nonlinear systems subject to input saturation and time-varying delay, IEEE Trans. Automat. Control, 64, 1, 359-364 (2019) · Zbl 1423.93401
[14] Wang, H.; Chen, B.; Liu, X.; Liu, K.; Chong, L., Robust adaptive tracking control for pure-feedback stochastic nonlinear systems with input constraints, IEEE Trans. Cybern., 43, 6, 2093-2104 (2013)
[15] Tian, E.; Wang, Z.; Zou, L.; Yue, D., Chance-constrained \(H_\infty\) control for a class of time-varying systems with stochastic nonlinearities: the finite-horizon case, Automatica, 107, 296-305 (2019) · Zbl 1429.93090
[16] Astrom, K.; Bernhardsson, B., Comparison of periodic and event based sampling for first-order stochastic systems, IFAC Proc. Vol., 32, 2, 5006-5011 (1999)
[17] Araen, K., A simple event-based PID controller, Proceedings of the 14th IFAC World Congress, 423-428 (1999)
[18] Yue, D.; Tian, E.; Han, Q., A delay system method for designing event-triggered controllers of networked control systems, IEEE Trans. Automat. Control, 58, 2, 475-481 (2013) · Zbl 1369.93183
[19] Peng, C.; Yang, T., Event-triggered communication and \(H_\infty\) control co-design for networked control systems, Automatica, 49, 5, 1326-1332 (2013) · Zbl 1319.93022
[20] Peng, C.; Sun, H., Switching-like event-triggered control for networked control systems under malicious denial of service attacks, IEEE Trans. Automat. Control, 65, 9, 3943-3949 (2013) · Zbl 1533.93493
[21] Qu, F.; Tian, E.; Zhao, X., Chance-constrained \(H_\infty\) state estimation for recursive neural networks under deception attacks and energy constraints: the finite-horizon case, IEEE Trans. Neural Netw. Learn. Syst. (2022)
[22] Peng, C.; Wu, J.; Tian, E., Stochastic event-triggered \(H_\infty\) control for networked systems under denial-of-service attacks, IEEE Trans. Syst. Man Cybern., 52, 7, 2168-2232 (2021)
[23] Zhang, X.; Han, Q.; Ge, X.; Ding, D.; Ding, L.; Yue, D.; Peng, C., Networked control systems: a survey of trends and techniques, IEEE/CAA J. Autom. Sin., 7, 1, 1-17 (2020)
[24] Peng, C.; Li, F., A survey on recent advances in event-triggered communication and control, Inf. Sci., 457, 113-125 (2018) · Zbl 1448.93210
[25] Zhu, S.; Tian, E.; Xu, D.; Liu, J., An adaptive torus-event-based \(H_\infty\) controller design for networked T-S fuzzy systems under deception attacks, Int. J. Robust Noninear Control (2022)
[26] Xing, L.; Wen, C.; Liu, Z.; Su, H.; Cai, J., Event-triggered output feedback control for a class of uncertain nonlinear systems, IEEE Trans. Automat. Control, 64, 1, 290-297 (2019) · Zbl 1423.93341
[27] Xing, L.; Wen, C.; Liu, Z.; Su, H.; Cai, J., Adaptive compensation for actuator failures with event-triggered input, Automatica, 85, 129-136 (2017) · Zbl 1375.93084
[28] Zhang, C.; Yang, G., Event-triggered control for a class of strict-feedback nonlinear systems, Int. J. Robust Nonlinear Control, 29, 7, 2112-2124 (2019) · Zbl 1418.93159
[29] Luo, S.; Deng, F., On event-triggered control of nonlinear stochastic systems, IEEE Trans. Automat. Control, 65, 1, 369-375 (2020) · Zbl 1483.93611
[30] Xia, J.; Li, B.; Su, S.; Sun, W.; Shen, H., Finite-time command filtered event-triggered adaptive fuzzy tracking control for stochastic nonlinear systems, IEEE Trans. Fuzzy Syst., 29, 7, 1815-1825 (2020)
[31] Wu, Y.; Xie, X., Adaptive fuzzy control for high-order nonlinear time-delay systems with full-state constraints and input saturation, IEEE Trans. Fuzzy Syst., 28, 8, 1652-1663 (2020)
[32] Chen, C.; Chen, G.; Sun, Z., Finite-time stabilization via output feedback for high-order planar systems subjected to an asymmetric output constraint, Nonlinear Dyn., 104, 7, 2347-2361 (2021)
[33] Shen, Y.; Zhai, J., Global dynamic output feedback for high-order nonlinear systems with uncertain output function, Nonlinear Dyn., 104, 13, 2389-2409 (2021)
[34] Fang, L.; Ding, S.; Gu, J.; Park, J.; Ma, L., Adaptive fuzzy control for nontriangular stochastic high-order nonlinear systems subject to asymmetric output constraints, IEEE Trans. Cybern., 225-234 (2020)
[35] Li, H.; Bai, L.; Zhou, Q.; Lu, R.; Wang, L., Adaptive fuzzy control of stochastic nonstrict-feedback nonlinear systems with input saturation, IEEE Trans. Syst. ManCybern.-Part B, 47, 8, 2185-2197 (2017)
[36] Wang, L.; Wang, H.; Liu, P., Adaptive fuzzy control of stochastic nonstrict-feedback nonlinear systems with actuartor faults, Nonlinear Dyn., 104, 8, 523-536 (2021)
[37] Sun, W.; Su, S.; Wu, Y.; Xia, J., A novel adaptive fuzzy control for output constrained stochastic non-strict feedback nonlinear systems, IEEE Trans. Fuzzy Syst. (2020)
[38] Wang, A.; Liu, L.; Qiu, J.; Lu, R.; Feng, G., Event-triggered robust adaptive fuzzy control for a class of nonlinear systems, IEEE Trans. Fuzzy Syst., 27, 8, 1648-1658 (2019)
[39] Sun, Z.; Zhou, C.; Liu, Z.; Meng, Q., Fast finite-time adaptive event-triggered tracking for uncertain nonlinear systems, Int. J. Robust Nonlinear Control, 30, 17, 7806-7821 (2020) · Zbl 1525.93393
[40] Duan, N.; Min, H.; Zhang, Z., Adaptive stabilization control for high-order nonlinear time-delay systems with its application, J. Franklin Inst., 354, 14, 5825-5838 (2017) · Zbl 1373.93283
[41] Wang, L.; Mendel, L., Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Trans. Neural Netw., 3, 5, 807-814 (1992)
[42] Li, B.; Xia, J.; Zhang, H.; Shen, H.; Wang, Z., Event-triggered adaptive fuzzy tracking control for stochastic nonlinear systems, J. Franklin Inst., 357, 9505-9522 (2020) · Zbl 1448.93199
[43] Gao, Y.; Sun, X.; Wen, C.; Wang, W., Event-triggered control for stochastic nonlinear systems, Automatica, 95, 534-538 (2018) · Zbl 1402.93255
[44] Wang, Y.; Zheng, W.; Zhang, H., Dynamic event-based control of nonlinear stochastic systems, IEEE Trans. Automat. Control, 62, 10, 6544-6551 (2017) · Zbl 1390.93847
[45] Wu, L.; Gao, Y.; Liu, J.; Li, H., Event-triggered sliding mode control of stochastic systems via output feedback, Automatica, 82, 79-92 (2017) · Zbl 1376.93030
[46] Wu, Y.; Hu, S.; Li, W., Exponential stability of stochastic Takagi-Sugeno fuzzy systems under intermittent dynamic event-triggered control, IEEE Trans. Fuzzy Syst., 4, 1-12 (2021)
[47] Zeng, P.; Deng, F.; Gao, X.; Liu, X., Event-triggered and self-triggered \(L_\infty\) control for Markov jump stochastic nonlinear systems under DoS attacks, IEEE Trans. Cybern., 26, 1-14 (2021)
[48] Xue, L.; Zhang, T.; Zhang, W.; Xie, X., Global adaptive stabilization and tracking control for high-order stochastic nonlinear systems with time-varying delays, IEEE Trans. Automat. Control, 63, 9, 2928-2943 (2018) · Zbl 1423.93372
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.