×

Distributed encryption fusion estimation against full eavesdropping. (English) Zbl 1520.94068

Summary: This paper is concerned with the privacy-preserving distributed fusion estimation problem against full eavesdropping, where the eavesdropper can completely and precisely obtain the information transmitted from local sensors to legitimate user. To depict the privacy-preservation level, we propose novel confidentiality index and rank based on the estimation performances of both eavesdropper and legitimate user. Then, a new encryption approach, which is composed of two-step sequential noise injections, is developed such that the highest confidentiality rank can be achieved. It is rather remarkable that the weighting fusion matrix, which is unique in the distributed fusion estimation field, is utilized to design perturbation noises. In this case, the compensating fusion estimator of legitimate user can effectively reduce the adverse impact of disturbance with null space design in the proposed approach. Moreover, the probability distribution of inserted noises simultaneously satisfies the differential privacy, which strongly enhances the confidentiality level of local state estimates. Finally, an illustrative example is provided to verify the effectiveness and advantages of the proposed methods.

MSC:

94A60 Cryptography
Full Text: DOI

References:

[1] Bar-Shalom, Y.; Li, X. R.; Kirubarajan, T., Estimation with applications to tracking and navigation (2001), Wiley: Wiley Hoboken, NJ, USA
[2] Basudan, S.; Lin, X.; Sankaranarayanan, K., A privacy-preserving vehicular crowdsensing-based road surface condition monitoring system using fog computing, IEEE Internet of Things Journal, 4, 3, 772-782 (2017)
[3] Chen, B.; Ho, D. W.C.; Zhang, W.; Yu, L., Networked fusion estimation with bounded noises, IEEE Transactions on Automatic Control, 62, 10, 5415-5421 (2017) · Zbl 1390.93779
[4] Chen, B.; Hu, G., Nonlinear state estimation under bounded noises, Automatica, 98, 159-168 (2018) · Zbl 1406.93316
[5] Chen, B.; Hu, G.; Ho, D. W.C.; Yu, L., Distributed covariance intersection fusion estimation for cyber-physical systems with communication constraints, IEEE Transactions on Automatic Control, 61, 12, 4020-4026 (2016) · Zbl 1359.93463
[6] Chen, B.; Hu, G.; Zhang, W.; Yu, L., Distributed mixed \(H_2 / H_\infty\) fusion estimation with limited communication capacity, IEEE Transactions on Automatic Control, 61, 3, 805-810 (2016) · Zbl 1359.93284
[7] Deng, Z.; Gao, Y.; Mao, L.; Li, Y.; Hao, G., New approach to information fusion steady-state Kalman filtering, Automatica, 41, 10, 1695-1707 (2005) · Zbl 1087.93056
[8] Ding, D.; Han, Q.; Xiang, Y.; Ge, X.; Zhang, X., A survey on security control and attack detection for industrial cyber-physical systems, Neurocomputing, 275, 1674-1683 (2018)
[9] Ding, K.; Ren, X.; Leong, A. S.; Quevedo, D. E.; Shi, L., Remote state estimation in the presence of an active eavesdropper, IEEE Transactions on Automatic Control, 66, 1, 229-244 (2021) · Zbl 1536.93866
[10] Dwork, C.; McSherry, F.; Nissim, K.; Smith, A., Calibrating noise to sensitivity in private data analysis, (Proc. 3rd theory of cryptogr. conf. (2006)), 265-284 · Zbl 1112.94027
[11] Eustace, R. W.; Woodyatt, B. A.; Merrington, G. L.; Runacres, A., Fault signatures obtained from fault implant tests on an F404 engine, Transactions of the ASME. Journal of Engineering for Gas Turbines and Power, 116, 1, 178-183 (1994)
[12] Fiore, D.; Russo, G., Resilient consensus for multi-agent systems subject to differential privacy requirements, Automatica, 106, 18-26 (2019) · Zbl 1429.93329
[13] Goel, S.; Negi, R., Guaranteeing secrecy using artificial noise, IEEE Transactions on Wireless Communication, 7, 6, 2180-2189 (2008)
[14] Huang, L.; Ding, K.; Leong, A. S.; Quevedo, D. E.; Shi, L., Encryption scheduling for remote state estimation under an operation constraint, Automatica, 127, Article 109537 pp. (2021) · Zbl 1461.94078
[15] Huang, J.; Ho, D. W.C.; Li, F.; Yang, W.; Tang, Y., Secure remote state estimation against linear man-in-the-middle attacks using watermarking, Automatica, 121, Article 109182 pp. (2022) · Zbl 1448.93317
[16] Kawano, Y.; Kashima, K.; Cao, M., Modular control under privacy protection: Fundamental trade-offs, Automatica, 127, Article 109518 pp. (2021) · Zbl 1461.93377
[17] Le Ny, J.; Pappas, G. J., Differentially private filtering, IEEE Transactions on Automatic Control, 59, 2, 341-354 (2014) · Zbl 1360.93701
[18] Leong, A. S.; Quevedo, D. E.; Dolz, D.; Dey, S., Transmission scheduling for remote state estimation over packet dropping links in the presence of an eavesdropper, IEEE Transactions on Automatic Control, 64, 9, 3732-3739 (2019) · Zbl 1482.93603
[19] Leong, A. S.; Redder, A.; Danie, E.; Dey, S., On the use of artificial noise for secure state estimation in the presence of eavesdroppers, (2018 European control conference. 2018 European control conference, ECC (2018)), 325-330
[20] Lu, Y.; Zhu, M., Privacy preserving distributed optimization using homomorphic encryption, Automatica, 96, 314-325 (2018) · Zbl 1408.94947
[21] Mo, Y.; Murray, R. M., Privacy preserving average consensus, IEEE Transactions on Automatic Control, 62, 2, 753-765 (2017) · Zbl 1364.91048
[22] Roecker, J. A.; McGillem, C. D., Comparison of two-sensor tracking methods based on state vector fusion and measurement fusion, IEEE Transactions on Aerospace and Electronic Systems, 24, 4, 447-449 (1988)
[23] Shang, J.; Zhou, J.; Chen, T., Single-dimensional encryption against innovation-based stealthy attacks on remote state estimation, Automatica, 136, Article 110015 pp. (2022) · Zbl 1480.93175
[24] Sun, S.; Deng, Z., Multi-sensor optimal information fusion Kalman filter, Automatica, 40, 6, 1017-1023 (2004) · Zbl 1075.93037
[25] Tsiamis, A.; Gatsis, K.; Pappas, G. J., State-secrecy codes for stable systems, (2018 Annual American control conference. 2018 Annual American control conference, ACC (2018)), 171-177
[26] Tsiamis, A.; Gatsis, K.; Pappas, G. J., State-secrecy codes for networked linear systems, IEEE Transactions on Automatic Control, 65, 5, 2001-2015 (2020) · Zbl 1533.93782
[27] Wang, L.; Cao, X.; Zhang, H.; Sun, C.; Zheng, W. X., Transmission scheduling for privacy-optimal encryption against eavesdropping attacks on remote state estimation, Automatica, 137, Article 110145 pp. (2022) · Zbl 1482.93236
[28] Xu, D.; Yan, X.; Chen, B.; Yu, L., Energy-constrained confidentiality fusion estimation against eavesdroppers, IEEE Transactions on Circuits and Systems II: Express Briefs, 69, 2, 624-628 (2022)
[29] Yan, X.; Chen, B.; Hu, Z., Distributed estimation for interconnected dynamic systems under binary sensors, IEEE Sensors Journal, 22, 13, 13153-13161 (2022)
[30] Yan, X.; Chen, B.; Zhang, Y.; Yu, L., Guaranteeing differential privacy in distributed fusion estimation, IEEE Transactions on Aerospace and Electronic Systems (2022)
[31] Yan, X.; Zhang, Y.; Xu, D.; Chen, B., Distributed confidentiality fusion estimation against eavesdroppers, IEEE Transactions on Aerospace and Electronic Systems, 58, 4 (2022)
[32] Yang, W.; Li, D.; Zhang, H.; Tang, Y.; Zheng, W. X., An encoding mechanism for secrecy of remote state estimation, Automatica, 120, Article 109116 pp. (2020) · Zbl 1448.93322
[33] Yin, X.; Li, S., Synthesis of dynamic masks for infinite-step opacity, IEEE Transactions on Automatic Control, 65, 4, 1429-1441 (2020) · Zbl 1533.93518
[34] Zhang, Y.; Chen, B.; Yu, L., Fusion estimation under binary sensors, Automatica, 115, Article 108861 pp. (2020) · Zbl 1436.93135
[35] Zhang, W.; Shi, L., Sequential fusion estimation for clustered sensor networks, Automatica, 89, 358-363 (2018) · Zbl 1388.93090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.