×

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations. (English) Zbl 1338.76054

Summary: We consider multigrid methods for discontinuous Galerkin \(H(\operatorname{div},\Omega)\)-conforming discretizations of the Stokes and linear elasticity equations. We analyze variable V-cycle and W-cycle multigrid methods with nonnested bilinear forms. We prove that these algorithms are optimal and robust, i.e., their convergence rates are independent of the mesh size and also of the material parameters such as the Poisson ratio. Numerical experiments are conducted that further confirm the theoretical results.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
74B05 Classical linear elasticity
76D07 Stokes and related (Oseen, etc.) flows
Full Text: DOI

References:

[1] Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31(1), 61-73 (2007) · Zbl 1151.76527 · doi:10.1007/s10915-006-9107-7
[2] Chen, G., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 199(45), 2840-2855 (2010) · Zbl 1231.76146
[3] Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2005) · Zbl 1083.76001
[4] Ayuso, B., Brezzi, F., Marini, L.D., Xu, J., Zikatanov, L.: A simple preconditioner for a discontinuous Galerkin method for the Stokes problem. arXiv preprint (2012). arXiv:1209.5223 · Zbl 1299.76128
[5] Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56(3), 215-235 (1996) · Zbl 0857.65129 · doi:10.1007/BF02238513
[6] Nepomnyaschikh, S.V.: Mesh theorems on traces, normalizations of function traces and their inversion. Soviet J. Numer. Anal. Math. Model. 6(3), 223-242 (1991) · Zbl 0816.65097
[7] Oosterlee, C.W., Lorenz, F.J.: Multigrid methods for the Stokes system. Comput. Sci. Eng. 8(6), 34-43 (2006) · doi:10.1109/MCSE.2006.115
[8] Vanka, S.P.: Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. J. Comput. Phys. 65(1), 138-158 (1986) · Zbl 0606.76035 · doi:10.1016/0021-9991(86)90008-2
[9] Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems. Translated from the French by B. Hunt and D. C. Spicer. Studies in Mathematics and its Applications, vol. 15. North-Holland Publishing Co., Amsterdam (1983) · Zbl 0525.65045
[10] Schöberl, Joachim: Multigrid methods for a parameter dependent problem in primal variables. Numer. Math. 84(1), 97-119 (1999) · Zbl 0957.74059 · doi:10.1007/s002110050465
[11] Karer, E., Kraus, J., Zikatanov, L.: A subspace correction method for nearly singular elasticity problems. In: Bank, R., et al. (eds.) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol. 91, pp. 165-172. Springer, Berlin Heidelberg (2013)
[12] Lee, Y.J., Wu, J., Xu, L., Zikatanov, J.: Robust subspace correction methods for nearly singular systems. Math. Models Methods Appl. Sci. 17(11), 1937-1963 (2007) · Zbl 1151.65096 · doi:10.1142/S0218202507002522
[13] Arnold, D.N., Falk, R.S., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. 85(2), 197-217 (2000) · Zbl 0974.65113 · doi:10.1007/PL00005386
[14] Hackbusch, W.: Multigrid Methods and Applications, vol. 4. Springer, Berlin (1985) · Zbl 0595.65106 · doi:10.1007/978-3-662-02427-0
[15] Bramble, J.H., Pasciak, J.E., Xu, J.: The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms. Math. Comput. 56(193), 1-34 (1991) · Zbl 0718.65081 · doi:10.1090/S0025-5718-1991-1052086-4
[16] Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, vol. 87. Springer, Berlin (1986) · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[17] Bramble, James H.: A proof of the inf-sup condition for the Stokes equations on Lipschitz domains. Math. Models Methods Appl. Sci. 13(3), 361-371 (2003) · Zbl 1073.35184 · doi:10.1142/S0218202503002544
[18] Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21(4), 397-431 (1976) · Zbl 0317.35037 · doi:10.1016/0022-1236(76)90035-5
[19] Brenner, S.C., Sung, L.Y.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321-321 (1992) · Zbl 0766.73060 · doi:10.1090/S0025-5718-1992-1140646-2
[20] Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2007) · Zbl 0804.65101
[21] Langer, U., Queck, W.: On the convergence factor of Uzawa’s algorithm. J. Comput. Appl. Math. 15(2), 191-202 (1986) · Zbl 0601.76021 · doi:10.1016/0377-0427(86)90026-9
[22] Brenner, S.C.: Korn’s inequalities for piecewise \[{H}^1\] H1 vector fields. Math. Comput. 73, 1067-1088 (2004) · Zbl 1055.65118 · doi:10.1090/S0025-5718-03-01579-5
[23] Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40(6), 2171-2194 (2002) · Zbl 1055.76032 · doi:10.1137/S0036142901399124
[24] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749-1779 (2002) · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[25] Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, USA (2003) · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[26] Boffi, D., Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 44. Springer, New York (2013) · Zbl 1277.65092
[27] Babuška, I., Aziz, A.K.: Lectures on the mathematical foundations of the finite element method. University of Maryland, College Park, Washington DC. Technical Note BN-748 (1972) · Zbl 0268.65052
[28] Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20:179-192, (1972/73) · Zbl 0258.65108
[29] Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581-613 (1992) · Zbl 0788.65037 · doi:10.1137/1034116
[30] Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15(3), 573-598 (2002) · Zbl 0999.47015 · doi:10.1090/S0894-0347-02-00398-3
[31] Bergh, J., Löfström, J.: Interpolation Spaces: an Introduction. Springer, Berlin (1976). Grundlehren der Mathematischen Wissenschaften, No. 223 · Zbl 0344.46071 · doi:10.1007/978-3-642-66451-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.