×

On mathematical aspects of the theory of topological insulators. (English) Zbl 1534.82014

Summary: This review is devoted to one of the most interesting and actively developing fields in condensed matter physics – theory of topological insulators. Apart from its importance for theoretical physics, this theory enjoys numerous connections with modern mathematics, in particular, with topology and homotopy theory, Clifford algebras, \(K\)-theory and non-commutative geometry. From the physical point of view topological invariance is equivalent to adiabatic stability. Topological insulators are characterized by the broad energy gap, stable under small deformations, which motivates application of topological methods. A key role in the study of topological objects in the solid state physics is played by their symmetry groups. There are three main types of symmetries – time reversion symmetry, preservation of the number of particles (charge symmetry) and PH-symmetry (particle-hole symmetry). Based on the study of symmetry groups and representation theory of Clifford algebras Kitaev proposed a classification of topological objects in solid state physics. In this review we pay special attention to the topological insulators invariant under time reversion.

MSC:

82D20 Statistical mechanics of solids
82D55 Statistical mechanics of superconductors
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
81V70 Many-body theory; quantum Hall effect
81V74 Fermionic systems in quantum theory
15A66 Clifford algebras, spinors
55R45 Homology and homotopy of \(B\mathrm{O}\) and \(B\mathrm{U}\); Bott periodicity
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] Abramovich, G.; Kalugin, P., Clifford modules and symmetries of topological insulators, Int. J. Geom. Methods in Phys., 9, 3, 1250023 (2012) · Zbl 1252.15030 · doi:10.1142/S0219887812500235
[2] Ando, Y., Topological Insulator Materials, J. Phys. Soc. Jpn., 82, 102001 (2013) · doi:10.7566/JPSJ.82.102001
[3] Ashcroft, N. W.; Mermin, N. D., Solid State Physics (1976), New York: Saunders, New York · Zbl 1118.82001
[4] Atiyah, M. F., K-theory (1967), New York: Benjamin, New York
[5] Atiyah, M. F.; Singer, I. M., Index theory for skew-adjoint Fredholm operators, Publ. Math. Inst. Haut. Etud. Sci., 37, 5-26 (1969) · Zbl 0194.55503 · doi:10.1007/BF02684885
[6] Atiyah, M. F.; Singer, I. M., The index of elliptic operators, V, Ann. Math., 93, 139-149 (1971) · Zbl 0212.28603 · doi:10.2307/1970757
[7] Avron, J. E.; Seiler, R.; Simon, B., Homotopy and quantization in condensed matter physics, Phys. Rev. Lett., 51, 1, 2185 (1990) · doi:10.1103/PhysRevLett.65.2185
[8] Berry, M., Quantum phase factors accompanying adiabatic changes, Proc. R. Soc. London, A392, 45 (1984) · Zbl 1113.81306
[9] Berezin, F. A.; Shubin, M. A., The Schrödinger Equation (1991), Boston: Kluwer, Boston · Zbl 0749.35001 · doi:10.1007/978-94-011-3154-4
[10] Fox, R., Homotopy groups and torus homotopy groups, Ann. Math., 49, 2, 471-510 (1948) · Zbl 0038.36602 · doi:10.2307/1969292
[11] Getzler, E., The odd Chern character in cyclic homology and spectral flow, Topology, 32, 3, 489-507 (1993) · Zbl 0801.46088 · doi:10.1016/0040-9383(93)90002-D
[12] Goodman, R.; Wallach, N. R., Symmetry, Representations and Invariants (2009), Dordrecht: Springer, Dordrecht · Zbl 1173.22001 · doi:10.1007/978-0-387-79852-3
[13] Hasan, M. Z.; Kane, C. L., Colloquium: Topological insulators, Rev. Mod. Phys., 82, 3045 (2010) · doi:10.1103/RevModPhys.82.3045
[14] Heinzner, P.; Huckleberry, A.; Zirnbauer, M., Symmetry classes of disordered fermions, Commun. Math. Phys., 257, 725-771 (2005) · Zbl 1092.82020 · doi:10.1007/s00220-005-1330-9
[15] Kane, CL; Mele, EJ, Quantumspin Halleffect in graphene, Phys. Rev. Lett., 95, 226801 (2005) · doi:10.1103/PhysRevLett.95.226801
[16] Kane, C. L.; Mele, E. J., Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett., 95, 146802 (2005) · doi:10.1103/PhysRevLett.95.146802
[17] Kaufmann, R. M., Dan, L., Wehefritz-Kaufmann, B.: Topological insulators and K-theory, arXiv:1510. 08001 · Zbl 1361.82005
[18] Kennedy, R.: Homotopy Theory of Topological Insulators, Inagural-Dissertation for the University Köln, 2014
[19] Kitaev, A., Periodic table for topological insulators and superconductors, Adv. Theor. Phys., AIP Conf. Proc., 1134, 22-30 (2009) · Zbl 1180.82221
[20] Laughlin, B., Quantized Hall conductance in two dimensions, Phys Rev., B23, 5232 (1981)
[21] Lifschitz, E. M.; Pitaevskii, L. P., Statistical Physics, Part 2. Theory of Condensed Matter (1980), Oxford: Pergamon Press, Oxford
[22] Sato, M.; Ando, Y., Topological superconductors: a review, Rep. Progress Phys., 80, 076501 (2017) · doi:10.1088/1361-6633/aa6ac7
[23] Sergeev, A. G., Spin geometry of Dirac and noncommutative geometry of Connes, Proc. Steklov Institute, 298, 256-293 (2017) · Zbl 1390.58006 · doi:10.1134/S0081543817060177
[24] Sergeev, A. G., Applications of noncommutative geometry in analysis and mathematical physics, Proc. Moscow Math. Society, 81, 2, 123-167 (2020) · Zbl 1470.30035
[25] Shen, S. Q., Topological Insulators: Dirac Operators in Condensed Matters (2013), Berlin: Springer, Berlin · Zbl 1273.82078
[26] Thouless, D. J.; Kohmoto, N.; Nightingale, M. P., Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49, 405-408 (1982) · doi:10.1103/PhysRevLett.49.405
[27] Qi, X. L.; Zhang, S. C., Topological insulators and superconductors, Rev. Mod. Phys., 83, 1057 (2011) · doi:10.1103/RevModPhys.83.1057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.