×

Modeling time’s arrow. (English) Zbl 1297.83012

Summary: Quantum gravity, the initial low entropy state of the Universe, and the problem of time are interlocking puzzles. In this article, we address the origin of the arrow of time from a cosmological perspective motivated by a novel approach to quantum gravitation. Our proposal is based on a quantum counterpart of the equivalence principle, a general covariance of the dynamical phase space. We discuss how the nonlinear dynamics of such a system provides a natural description for cosmological evolution in the early Universe. We also underscore connections between the proposed non-perturbative quantum gravity model and fundamental questions in non-equilibrium statistical physics.

MSC:

83C45 Quantization of the gravitational field
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
94A17 Measures of information, entropy
83F05 Relativistic cosmology
62P35 Applications of statistics to physics

References:

[1] DOI: 10.1088/0067-0049/192/2/17 · doi:10.1088/0067-0049/192/2/17
[2] DOI: 10.1098/rspa.1970.0021 · Zbl 0954.83012 · doi:10.1098/rspa.1970.0021
[3] Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 pp 231– (1998) · Zbl 0914.53047
[4] DOI: 10.1016/S0370-2693(98)00377-3 · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[5] Witten, Anti De Sitter space and holography, Adv. Theor. Math. Phys. 2 pp 253– (1998) · Zbl 0914.53048
[6] ’t Hooft, Dimensional reduction in quantum gravity, arXiv (1993)
[7] DOI: 10.1063/1.531249 · Zbl 0850.00013 · doi:10.1063/1.531249
[8] Seiberg, Emergent spacetime, arXiv (2006)
[9] DOI: 10.1103/PhysRevD.7.2333 · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[10] DOI: 10.1007/BF01645742 · Zbl 1125.83309 · doi:10.1007/BF01645742
[11] DOI: 10.1007/BF02345020 · Zbl 1378.83040 · doi:10.1007/BF02345020
[12] DOI: 10.1103/PhysRevLett.75.1260 · Zbl 1020.83609 · doi:10.1103/PhysRevLett.75.1260
[13] DOI: 10.1103/PhysRevLett.65.1697 · Zbl 0960.81524 · doi:10.1103/PhysRevLett.65.1697
[14] DOI: 10.1007/BF00732829 · doi:10.1007/BF00732829
[15] Ashtekar, Geometrical formulation of quantum mechanics, arXiv (1997) · Zbl 0976.53088
[16] DOI: 10.1142/S0217751X07036981 · Zbl 1200.83118 · doi:10.1142/S0217751X07036981
[17] DOI: 10.1103/PhysRevD.55.5112 · doi:10.1103/PhysRevD.55.5112
[18] DOI: 10.1016/j.physletb.2003.11.054 · Zbl 1246.83079 · doi:10.1016/j.physletb.2003.11.054
[19] DOI: 10.1103/PhysRevD.68.061501 · doi:10.1103/PhysRevD.68.061501
[20] DOI: 10.1016/S0370-2693(02)01865-8 · Zbl 0995.81035 · doi:10.1016/S0370-2693(02)01865-8
[21] DOI: 10.1088/1126-6708/2001/02/013 · doi:10.1088/1126-6708/2001/02/013
[22] DOI: 10.1142/S0217751X07036336 · Zbl 1118.83367 · doi:10.1142/S0217751X07036336
[23] DOI: 10.1142/S0218271804006371 · Zbl 1065.83510 · doi:10.1142/S0218271804006371
[24] DOI: 10.1155/2007/21586 · doi:10.1155/2007/21586
[26] DOI: 10.1007/s00208-004-0536-z · Zbl 1071.58005 · doi:10.1007/s00208-004-0536-z
[27] Michor, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms, Documenta Math. 10 pp 217– (2005) · Zbl 1083.58010
[28] DOI: 10.1103/PhysRevD.23.357 · doi:10.1103/PhysRevD.23.357
[29] DOI: 10.1088/0305-4470/35/4/305 · Zbl 1168.81317 · doi:10.1088/0305-4470/35/4/305
[30] Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics (2007) · Zbl 1123.37021
[31] DOI: 10.1103/PhysRevLett.84.1240 · doi:10.1103/PhysRevLett.84.1240
[32] DOI: 10.1103/RevModPhys.73.1067 · doi:10.1103/RevModPhys.73.1067
[33] DOI: 10.1016/0375-9601(86)90054-X · doi:10.1016/0375-9601(86)90054-X
[34] DOI: 10.1016/j.aop.2007.02.004 · Zbl 1115.70013 · doi:10.1016/j.aop.2007.02.004
[35] DOI: 10.1103/PhysRevLett.80.656 · Zbl 0949.83077 · doi:10.1103/PhysRevLett.80.656
[36] Makse, Statistical mechanics of jammed matter, The Physics of Granular Media (2004)
[38] Penrose, Singularities and time asymmetry, General Relativity (1979)
[39] Dorfman, An Introduction to Chaos in Non-Equilibrium Statistical Mechanics (1999) · Zbl 0973.82001
[41] Minic, The Jarzynski identity and the AdS/CFT duality, arXiv (2011)
[42] Minic, Non-relativistic AdS/CFT and aging/gravity duality, Phys. Rev. E 78 pp 061108– (2008) · doi:10.1103/PhysRevE.78.061108
[43] Jottar, Aging and holography, J. High Energ. Phys. 1011 pp 034– (2010) · Zbl 1294.81209 · doi:10.1007/JHEP11(2010)034
[44] Weinberg, Collapse of the state vector, arXiv (2011)
[45] Chang, Bell’s inequalities, superquantum correlations, and string theory, Adv. High Energy Phys. 2011 pp 593423– (2011) · Zbl 1234.81031 · doi:10.1155/2011/593423
[46] Chang, Quantum gravity, dynamical energy-momentum space and vacuum energy, Mod. Phys. Lett. A 25 pp 2947– (2010) · Zbl 1202.83041 · doi:10.1142/S0217732310034286
[47] Chang, On the minimal length uncertainty relation and the foundations of string theory, Adv. High Energy Phys. 2011 pp 493514– (2011) · Zbl 1234.81093 · doi:10.1155/2011/493514
[48] Minic, On the steady state distributions for turbulence, arXiv (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.