×

On the physics of the minimal length: the question of gauge invariance. (English) Zbl 1338.81283

Summary: In this note we discuss the question of gauge invariance in the presence of a minimal length. This contribution is prepared for the celebration of the 60th anniversary of the Yang-Mills theory.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory

References:

[1] 1. C.-N. Yang and R. L. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev.96, 191 (1954). genRefLink(16, ’S0217751X1630012XBIB001’, ’10.1103
[2] 2. L. O’Raifeartaigh, The Dawning of Gauge Theory (Princeton University Press, 1997).
[3] 3. C.-N. Yang, The conceptual origins of Maxwell’s equations and gauge theory, Physics Today67, 45 (2014). genRefLink(16, ’S0217751X1630012XBIB003’, ’10.1063
[4] 4. A. M. Jaffe and E. Witten, Quantum Yang-Mills theory, in Clay Mathematics Institute Millennium Problem: Yang-Mills and Mass Gap, Official Problem Description, 2000, http://www.claymath.org/sites/default/files/yangmills.pdf . · Zbl 1194.81002
[5] 5. D. Karabali and V. P. Nair, A gauge invariant Hamiltonian analysis for non-Abelian gauge theories in (2+1)-dimensions, Nucl. Phys. B464, 135 (1996). genRefLink(16, ’S0217751X1630012XBIB005’, ’10.1016
[6] 6. D. Karabali, C.-J. Kim and V. P. Nair, On the vacuum wave function and string tension of Yang-Mills theories in (2+1)-dimensions, Phys. Lett. B434, 103 (1998). genRefLink(16, ’S0217751X1630012XBIB006’, ’10.1016
[7] 7. R. G. Leigh, D. Minic and A. Yelnikov, Solving pure QCD in 2+1 dimensions, Phys. Rev. Lett.96, 222001 (2006). genRefLink(16, ’S0217751X1630012XBIB007’, ’10.1103
[8] 8. R. G. Leigh, D. Minic and A. Yelnikov, On the glueball spectrum of pure Yang-Mills theory in 2+1 dimensions, Phys. Rev. D76, 065018 (2007). genRefLink(16, ’S0217751X1630012XBIB008’, ’10.1103
[9] 9. L. Freidel, R. G. Leigh and D. Minic, Towards a solution of pure Yang-Mills theory in 3+1 dimensions, Phys. Lett. B641, 105 (2006). genRefLink(16, ’S0217751X1630012XBIB009’, ’10.1016
[10] 10. L. Freidel, R. G. Leigh, D. Minic and A. Yelnikov, On the spectrum of pure Yang-Mills theory, AMS/IP Stud. Adv. Math.44, 109 (2008). · Zbl 1165.81342
[11] 11. C. Kiefer, Quantum Gravity, International Series of Monographs on Physics, Vol. 155 (Oxford University Press, 2012).
[12] 12. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory, Vol. 1: Introduction (Cambridge University Press, 1988).
[13] 13. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory, Vol. 2: Loop Amplitudes, Anomalies and Phenomenology (Cambridge University Press, 1988). · Zbl 0619.53002
[14] 14. J. Polchinski, String Theory, Vol. 1: An Introduction to the Bosonic String (Cambridge University Press, 2007). · Zbl 1075.81054
[15] 15. J. Polchinski, String Theory, Vol. 2: Superstring Theory and Beyond (Cambridge University Press, 2007). · Zbl 1246.81199
[16] 16. K. Becker, M. Becker and J. H. Schwarz, String Theory and M-Theory: A Modern Introduction (Cambridge University Press, 2006). genRefLink(16, ’S0217751X1630012XBIB016’, ’10.1017 · Zbl 1123.81001
[17] 17. L. N. Chang, Z. Lewis, D. Minic and T. Takeuchi, On the minimal length uncertainty relation and the foundations of string theory, Adv. High Energy Phys.2011, 493514 (2011). · Zbl 1234.81093
[18] 18. J. A. Wheeler, On the nature of quantum geometrodynamics, Annals Phys.2, 604 (1957). genRefLink(16, ’S0217751X1630012XBIB018’, ’10.1016
[19] 19. C. A. Mead, Possible connection between gravitation and fundamental length, Phys. Rev.135, B849 (1964). genRefLink(16, ’S0217751X1630012XBIB019’, ’10.1103
[20] 20. M. Maggiore, A generalized uncertainty principle in quantum gravity, Phys. Lett. B304, 65 (1993). genRefLink(16, ’S0217751X1630012XBIB020’, ’10.1016
[21] 21. L. J. Garay, Quantum gravity and minimum length, Int. J. Mod. Phys. A10, 145 (1995). [Abstract] genRefLink(128, ’S0217751X1630012XBIB021’, ’A1995QA91700001’); genRefLink(64, ’S0217751X1630012XBIB021’, ’1995IJMPA..10..145G’);
[22] 22. S. Hossenfelder, Minimal length scale scenarios for quantum gravity, Living Rev. Rel.16, 2 (2013). genRefLink(16, ’S0217751X1630012XBIB022’, ’10.12942
[23] 23. S. Weinberg, The cosmological constant problem, Rev. Mod. Phys.61, 1 (1989). genRefLink(16, ’S0217751X1630012XBIB023’, ’10.1103
[24] 24. S. M. Carroll, The cosmological constant, Living Rev. Rel.4, 1 (2001). genRefLink(16, ’S0217751X1630012XBIB024’, ’10.12942
[25] 25. E. Witten, The cosmological constant from the viewpoint of string theory, in Sources and Detection of Dark Matter and Dark Energy in the Universe. Proceedings of the 4th International Symposium, DM 2000, Marina del Rey, USA, February 23-25, 2000 (2000).
[26] 26. N. Straumann, The history of the cosmological constant problem, in 18th IAP Colloquium on the Nature of Dark Energy: Observational and Theoretical Results on the Accelerating Universe, Paris, France, July 1-5, 2002 (2002).
[27] 27. S. Nobbenhuis, Categorizing different approaches to the cosmological constant problem, Found. Phys.36, 613 (2006). genRefLink(16, ’S0217751X1630012XBIB027’, ’10.1007
[28] 28. J. Polchinski, What is string theory?, in NATO Advanced Study Institute: Les Houches Summer School, Session 62: Fluctuating Geometries in Statistical Mechanics and Field Theory, Les Houches, France, August 2-September 9, 1994 (1994).
[29] 29. L. Freidel, R. G. Leigh and D. Minic, Born reciprocity in string theory and the nature of spacetime, Phys. Lett. B 730, 302 (2014). genRefLink(128, ’S0217751X1630012XBIB029’, ’000333506400050’); genRefLink(64, ’S0217751X1630012XBIB029’, ’2014PhLB..730..302F’); · Zbl 1381.81097
[30] 30. L. Freidel, R. G. Leigh and D. Minic, Quantum gravity, dynamical phase space and string theory, Int. J. Mod. Phys. D23, 1442006 (2014). [Abstract] genRefLink(128, ’S0217751X1630012XBIB030’, ’000346920700013’); genRefLink(64, ’S0217751X1630012XBIB030’, ’2014IJMPD..2342006F’);
[31] 31. L. Freidel, R. G. Leigh and D. Minic, Metastring theory and modular space-time, JHEP06, 006 (2015). genRefLink(16, ’S0217751X1630012XBIB031’, ’10.1007
[32] 32. L. Freidel, R. G. Leigh and D. Minic, Modular spacetime, Int. J. Mod. Phys. D24, 1544028 (2015). [Abstract] genRefLink(128, ’S0217751X1630012XBIB032’, ’000365625500034’); genRefLink(64, ’S0217751X1630012XBIB032’, ’2015IJMPD..2444028F’); · Zbl 1329.83188
[33] 33. H. Kragh, Arthur March, Werner Heisenberg, and the search for a smallest length, Revue d’histoire des science48, 401 (1995). genRefLink(16, ’S0217751X1630012XBIB033’, ’10.3406
[34] 34. B. Carazza and H. Kragh, Heisenberg’s lattice world: The 1930 theory sketch, Am. J. Phys.63, 595 (1995). genRefLink(16, ’S0217751X1630012XBIB034’, ’10.1119
[35] 35. W. Heisenberg and W. Pauli, On quantum field theory (in German), Z. Phys.56, 1 (1929). genRefLink(16, ’S0217751X1630012XBIB035’, ’10.1007
[36] 36. M. Born, Modified field equations with a finite radius of the electron, Nature132, 282 (1933). genRefLink(16, ’S0217751X1630012XBIB036’, ’10.1038
[37] 37. H. S. Snyder, Quantized space-time, Phys. Rev.71, 38 (1947). genRefLink(16, ’S0217751X1630012XBIB037’, ’10.1103
[38] 38. H. S. Snyder, The electromagnetic field in quantized space-time, Phys. Rev.72, 68 (1947). genRefLink(16, ’S0217751X1630012XBIB038’, ’10.1103
[39] 39. C. N. Yang, On quantized space-time, Phys. Rev.72, 874 (1947). genRefLink(16, ’S0217751X1630012XBIB039’, ’10.1103
[40] 40. C. A. Mead, Observable consequences of fundamental-length hypotheses, Phys. Rev.143, 990 (1966). genRefLink(16, ’S0217751X1630012XBIB040’, ’10.1103
[41] 41. T. Padmanabhan, Physical significance of Planck length, Annals Phys.165, 38 (1985). genRefLink(16, ’S0217751X1630012XBIB041’, ’10.1016
[42] 42. T. Padmanabhan, Limitations on the operational definition of space-time events and quantum gravity, Class. Quant. Grav.4, L107 (1987). genRefLink(16, ’S0217751X1630012XBIB042’, ’10.1088
[43] 43. T. Padmanabhan, Duality and zero point length of space-time, Phys. Rev. Lett.78, 1854 (1997). genRefLink(16, ’S0217751X1630012XBIB043’, ’10.1103
[44] 44. M. Kato, Particle theories with minimum observable length and open string theory, Phys. Lett. B245, 43 (1990). genRefLink(16, ’S0217751X1630012XBIB044’, ’10.1016
[45] 45. S. Weinberg, Precision tests of quantum mechanics, Phys. Rev. Lett.62, 485 (1989). genRefLink(16, ’S0217751X1630012XBIB045’, ’10.1103
[46] 46. S. Weinberg, Testing quantum mechanics, Annals Phys.194, 336 (1989). genRefLink(16, ’S0217751X1630012XBIB046’, ’10.1016
[47] 47. C. M. Bender, D. C. Brody and H. F. Jones, Complex extension of quantum mechanics, Phys. Rev. Lett.89, 270401 (2002) [Erratum: ibid.92, 119902 (2004)]. genRefLink(16, ’S0217751X1630012XBIB047’, ’10.1103
[48] 48. M. Maggiore, Quantum groups, gravity and the generalized uncertainty principle, Phys. Rev. D49, 5182 (1994). genRefLink(16, ’S0217751X1630012XBIB048’, ’10.1103
[49] 49. M. Maggiore, The algebraic structure of the generalized uncertainty principle, Phys. Lett. B319, 83 (1993). genRefLink(16, ’S0217751X1630012XBIB049’, ’10.1016
[50] 50. A. Kempf, G. Mangano and R. B. Mann, Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D52, 1108 (1995). genRefLink(16, ’S0217751X1630012XBIB050’, ’10.1103
[51] 51. L. N. Chang, D. Minic, N. Okamura and T. Takeuchi, Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations, Phys. Rev. D65, 125027 (2002). genRefLink(16, ’S0217751X1630012XBIB051’, ’10.1103
[52] 52. L. N. Chang, D. Minic, N. Okamura and T. Takeuchi, The effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem, Phys. Rev. D65, 125028 (2002). genRefLink(16, ’S0217751X1630012XBIB052’, ’10.1103
[53] 53. S. Benczik, L. N. Chang, D. Minic, N. Okamura, S. Rayyan and T. Takeuchi, Short distance versus long distance physics: The Classical limit of the minimal length uncertainty relation, Phys. Rev. D66, 026003 (2002). genRefLink(16, ’S0217751X1630012XBIB053’, ’10.1103
[54] 54. S. Benczik, L. N. Chang, D. Minic, N. Okamura, S. Rayyan and T. Takeuchi, Classical implications of the minimal length uncertainty relation, arXiv:hep-th/0209119 [arXiv] (2002).
[55] 55. S. Benczik, L. N. Chang, D. Minic and T. Takeuchi, The hydrogen atom with minimal length, Phys. Rev. A72, 012104 (2005). genRefLink(16, ’S0217751X1630012XBIB055’, ’10.1103
[56] 56. L. N. Chang, D. Minic and T. Takeuchi, Quantum gravity, dynamical energy-momentum space and vacuum energy, Mod. Phys. Lett. A25, 2947 (2010). [Abstract] genRefLink(128, ’S0217751X1630012XBIB056’, ’000283692800003’); genRefLink(64, ’S0217751X1630012XBIB056’, ’2010MPLA...25.2947C’); · Zbl 1202.83041
[57] 57. Z. Lewis and T. Takeuchi, Position and momentum uncertainties of the normal and inverted harmonic oscillators under the minimal length uncertainty relation, Phys. Rev. D84, 105029 (2011). genRefLink(16, ’S0217751X1630012XBIB057’, ’10.1103
[58] 58. Z. Lewis, A. Roman and T. Takeuchi, Position and momentum uncertainties of a particle in a V-shaped potential under the minimal length uncertainty relation, Int. J. Mod. Phys. A30, 1550206 (2015). [Abstract] genRefLink(128, ’S0217751X1630012XBIB058’, ’000367349600004’); genRefLink(64, ’S0217751X1630012XBIB058’, ’2015IJMPA..3050206L’); · Zbl 1337.81064
[59] 59. D. Amati, M. Ciafaloni and G. Veneziano, Can space-time be probed below the string size?, Phys. Lett. B216, 41 (1989). genRefLink(16, ’S0217751X1630012XBIB059’, ’10.1016
[60] 60. E. Witten, Reflections on the fate of space-time, Phys. Today49, 24 (1996). genRefLink(16, ’S0217751X1630012XBIB060’, ’10.1063
[61] 61. D. J. Gross and P. F. Mende, The high-energy behavior of string scattering amplitudes, Phys. Lett. B197, 129 (1987). genRefLink(16, ’S0217751X1630012XBIB061’, ’10.1016
[62] 62. D. J. Gross and P. F. Mende, String theory beyond the Planck scale, Nucl. Phys. B303, 407 (1988). genRefLink(16, ’S0217751X1630012XBIB062’, ’10.1016
[63] 63. D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at Planckian energies, Phys. Lett. B197, 81 (1987). genRefLink(16, ’S0217751X1630012XBIB063’, ’10.1016
[64] 64. D. Amati, M. Ciafaloni and G. Veneziano, Classical and quantum gravity effects from Planckian energy superstring collisions, Int. J. Mod. Phys. A3, 1615 (1988). [Abstract] genRefLink(128, ’S0217751X1630012XBIB064’, ’A1988N760500005’); genRefLink(64, ’S0217751X1630012XBIB064’, ’1988IJMPA...3.1615A’);
[65] 65. W. Heisenberg, The Physical Principles of Quantum Theory (University of Chicago Press, 1930). · JFM 56.0745.04
[66] 66. J. A. Wheeler, On the mathematical description of light nuclei by the method of resonating group structure, Phys. Rev.52, 1107 (1937). genRefLink(16, ’S0217751X1630012XBIB066’, ’10.1103
[67] 67. W. Heisenberg, Die beobachtbaren größen in der theorie der elementarteilchen, Z. Phys.120, 513 (1943). genRefLink(16, ’S0217751X1630012XBIB067’, ’10.1007
[68] 68. W. Heisenberg, Die beobachtbaren größen in der theorie der elementarteilchen. II, Z. Phys.120, 673 (1943). genRefLink(16, ’S0217751X1630012XBIB068’, ’10.1007
[69] 69. W. Heisenberg, Die beobachtbaren größen in der theorie der elementarteilchen. III, Z. Phys.123, 93 (1944). genRefLink(16, ’S0217751X1630012XBIB069’, ’10.1007
[70] 70. L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, arXiv:hep-th/9805114 [arXiv] (1998).
[71] 71. A. W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D59, 065011 (1999). genRefLink(16, ’S0217751X1630012XBIB071’, ’10.1103
[72] 72. L. I. Mandelshtam and I. G. Tamm, The uncertainty relation between energy and time in nonrelativistic quantum mechanics, J. Phys. (USSR)9, 249 (1945).
[73] 73. E. P. Wigner, On the time-energy uncertainty relation, in Aspects of Quantum Theory (Cambridge University Press, 1972).
[74] 74. M. Bauer and P. A. Mello, The time-energy uncertainty relation, Annals Phys.111, 38 (1978). genRefLink(16, ’S0217751X1630012XBIB074’, ’10.1016
[75] 75. T. Yoneya, On the interpretation of minimal length in string theories, Mod. Phys. Lett. A4, 1587 (1989). [Abstract] genRefLink(128, ’S0217751X1630012XBIB075’, ’A1989AR17300011’); genRefLink(64, ’S0217751X1630012XBIB075’, ’1989MPLA....4.1587Y’);
[76] 76. T. Yoneya, Schild action and space-time uncertainty principle in string theory, Prog. Theor. Phys.97, 949 (1997). genRefLink(16, ’S0217751X1630012XBIB076’, ’10.1143
[77] 77. T. Yoneya, D particles, D instantons, and a space-time uncertainty principle in string theory, in Recent Developments in Nonperturbative Quantum Field Theory. Proceedings of the APCTP-ICTP Joint International Conference, Seoul, Korea, May 26-30, 1997 (1997).
[78] 78. T. Yoneya, String theory and space-time uncertainty principle, Prog. Theor. Phys.103, 1081 (2000). genRefLink(16, ’S0217751X1630012XBIB078’, ’10.1143
[79] 79. T. Yoneya, Space-time uncertainty and noncommutativity in string theory, Int. J. Mod. Phys. A16, 945 (2001), [305 (2000)]. [Abstract] genRefLink(128, ’S0217751X1630012XBIB079’, ’000167448500028’); genRefLink(64, ’S0217751X1630012XBIB079’, ’2001IJMPA..16..945Y’); · Zbl 0984.81138
[80] 80. M. Li and T. Yoneya, D particle dynamics and the space-time uncertainty relation, Phys. Rev. Lett.78, 1219 (1997). genRefLink(16, ’S0217751X1630012XBIB080’, ’10.1103
[81] 81. M. Li and T. Yoneya, Short distance space-time structure and black holes in string theory: A short review of the present status, Chaos Solitons Fractals10, 423 (1999). genRefLink(16, ’S0217751X1630012XBIB081’, ’10.1016
[82] 82. A. Jevicki and T. Yoneya, Space-time uncertainty principle and conformal symmetry in D particle dynamics, Nucl. Phys. B535, 335 (1998). genRefLink(16, ’S0217751X1630012XBIB082’, ’10.1016
[83] 83. H. Awata, M. Li, D. Minic and T. Yoneya, On the quantization of Nambu brackets, JHEP02, 013 (2001). genRefLink(16, ’S0217751X1630012XBIB083’, ’10.1088
[84] 84. D. Minic, On the space-time uncertainty principle and holography, Phys. Lett. B442, 102 (1998). genRefLink(16, ’S0217751X1630012XBIB084’, ’10.1016
[85] 85. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, The principle of relative locality, Phys. Rev. D84, 084010 (2011). genRefLink(16, ’S0217751X1630012XBIB085’, ’10.1103 · Zbl 1228.83040
[86] 86. M. Born, Quantised field theory and the mass of the proton, Nature136, 952 (1935). genRefLink(16, ’S0217751X1630012XBIB086’, ’10.1038
[87] 87. M. Born, Reciprocity theory of elementary particles, Rev. Mod. Phys.21, 463 (1949). genRefLink(16, ’S0217751X1630012XBIB087’, ’10.1103
[88] 88. M. Born, A suggestion for unifying quantum theory and relativity, Proc. Roy. Soc. Lond. A165, 291 (1938). genRefLink(16, ’S0217751X1630012XBIB088’, ’10.1098
[89] 89. H. Yukawa, Quantum theory of nonlocal fields. 1. Free fields, Phys. Rev.77, 219 (1950). genRefLink(16, ’S0217751X1630012XBIB089’, ’10.1103
[90] 90. Y. A. Gol’fand, On the introduction of an ”elementary length” in the relativistic theory of elementary particles, Sov. Phys. JETP10, 356 (1960).
[91] 91. Y. A. Gol’fand, Quantum field theory in constant curvature p-space, Sov. Phys. JETP16, 184 (1963). genRefLink(64, ’S0217751X1630012XBIB091’, ’1963JETP...16..184G’);
[92] 92. Y. A. Gol’fand, On the properties of displacements in p-space of constant curvature, Sov. Phys. JETP17, 842 (1963).
[93] 93. G. Veneziano, A stringy nature needs just two constants, Europhys. Lett.2, 199 (1986). genRefLink(16, ’S0217751X1630012XBIB093’, ’10.1209
[94] 94. I. A. Batalin, E. S. Fradkin and T. E. Fradkina, Another version for operatorial quantization of dynamical systems with irreducible constraints, Nucl. Phys. B314, 158 (1989). genRefLink(16, ’S0217751X1630012XBIB094’, ’10.1016
[95] 95. L. Freidel and E. R. Livine, Effective 3-D quantum gravity and non-commutative quantum field theory, Phys. Rev. Lett.96, 221301 (2006). genRefLink(16, ’S0217751X1630012XBIB095’, ’10.1103
[96] 96. I. Bars, Gauge symmetry in phase space, consequences for physics and spacetime, Int. J. Mod. Phys. A25, 5235 (2010). [Abstract] genRefLink(128, ’S0217751X1630012XBIB096’, ’000284358300002’); genRefLink(64, ’S0217751X1630012XBIB096’, ’2010IJMPA..25.5235B’); · Zbl 1208.81141
[97] 97. M. R. Douglas and N. A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys.73, 977 (2001). genRefLink(16, ’S0217751X1630012XBIB097’, ’10.1103
[98] 98. R. J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept.378, 207 (2003). genRefLink(16, ’S0217751X1630012XBIB098’, ’10.1016
[99] 99. A. P. Polychronakos, Non-commutative fluids, Prog. Math. Phys.53, 109 (2007). genRefLink(16, ’S0217751X1630012XBIB099’, ’10.1007 · Zbl 1137.81053
[100] 100. R. J. Szabo, Quantum gravity, field theory and signatures of noncommutative spacetime, Gen. Rel. Grav.42, 1 (2010). genRefLink(16, ’S0217751X1630012XBIB100’, ’10.1007
[101] 101. D. N. Blaschke, E. Kronberger, R. I. P. Sedmik and M. Wohlgenannt, Gauge theories on deformed spaces, SIGMA6, 062 (2010). · Zbl 1216.81132
[102] 102. D. D’Ascanio, P. Pisani and D. V. Vassilevich, Renormalization on noncommutative torus, arXiv:1602.01479 [arXiv] [hep-th] (2016).
[103] 103. A. Borowiec, T. Juric, S. Meljanac and A. Pachol, Noncommutative tetrads and quantum spacetimes, arXiv:1602.01292 [arXiv] [hep-th] (2016).
[104] 104. F. Scardigli, Generalized uncertainty principle in quantum gravity from micro – black hole Gedanken experiment, Phys. Lett. B452, 39 (1999). genRefLink(16, ’S0217751X1630012XBIB104’, ’10.1016
[105] 105. F. Brau, Minimal length uncertainty relation and hydrogen atom, J. Phys. A32, 7691 (1999). genRefLink(16, ’S0217751X1630012XBIB105’, ’10.1088 · Zbl 0991.81047
[106] 106. F. Brau and F. Buisseret, Minimal length uncertainty relation and gravitational quantum well, Phys. Rev. D74, 036002 (2006). genRefLink(16, ’S0217751X1630012XBIB106’, ’10.1103
[107] 107. A. F. Ali, S. Das and E. C. Vagenas, Discreteness of space from the generalized uncertainty principle, Phys. Lett. B678, 497 (2009). genRefLink(16, ’S0217751X1630012XBIB107’, ’10.1016
[108] 108. S. Das, E. C. Vagenas and A. F. Ali, Discreteness of space from GUP II: Relativistic wave equations, Phys. Lett. B690, 407 (2010) [Erratum: ibid.692, 342 (2010)]. genRefLink(16, ’S0217751X1630012XBIB108’, ’10.1016
[109] 109. A. F. Ali, S. Das and E. C. Vagenas, A proposal for testing quantum gravity in the lab, Phys. Rev. D84, 044013 (2011). genRefLink(16, ’S0217751X1630012XBIB109’, ’10.1103
[110] 110. L. N. Chang, D. Minic, A. Roman, C. Sun and T. Takeuchi, in preparation.
[111] 111. T. Matsuo and Y. Shibusa, Quantization of fields based on generalized uncertainty principle, Mod. Phys. Lett. A21, 1285 (2006). [Abstract] genRefLink(128, ’S0217751X1630012XBIB111’, ’000238856900004’); genRefLink(64, ’S0217751X1630012XBIB111’, ’2006MPLA...21.1285M’); · Zbl 1098.81828
[112] 112. H. Grosse and R. Wulkenhaar, Renormalization of 4 theory on noncommutative R4 in the matrix base, Commun. Math. Phys.256, 305 (2005). genRefLink(16, ’S0217751X1630012XBIB112’, ’10.1007
[113] 113. B. P. Abbott et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett.116, 061102 (2016). genRefLink(16, ’S0217751X1630012XBIB113’, ’10.1103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.